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A The above photograph, taken by. R. R. Parmerter and

M. E. Fourney (GALCIT), shows a photoelastic specimen
of a solid rocket grain subjected to a simulated internal
pressure when viewed in a white light polariscope.
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Over the last several vears, the .lolid propellant rockst has received in-

-
A
I(l ‘Y ’l

creasing attention, based primarily upon its generally increased reliability and

atate of readiness, although not to the exclusion of alternate propulsion means such

as the liquid propellant rocket. During the design of the solid rocket motor system
certain structural problems immediately arise, with two of the more common ones

B being high temperature nozzle design and the fabrication of ultra-high strength

- . metal cases to contain the burning motor. As an outgrowth of a meeting in 1958 of

E the Physical Properties Panel, which is a technical group sponsored by the joint
services through the Solid Propellant Information Agency at the Applied Physice

T Laboratory of the Johns Hopkins University, it appeared adviesable to direct in=
creased attention tcward another class of problems; namely, evaluating the structural

Ty

T
»

TV H
’Al.l

.

integrity of the rocket grain or viscoelastic solid fuel itself. The physical and tech=

EC % RRCR

nical behavior of the fuel, in contrast to most solids in engineering use, is signifi=
- ' .- '_cantly affected by relatively small changes in temperature and characteristic time

«

- scale under consideration. For this reason, less commonly employed structural

analysis methods must be used in order to assess gquantitatively the behavior of the
grain under pressure, temperature, and environmental loadings.
During the aforementioned meeting, Dr. F. J. Lavacot expressed the hope

that it would be possible to collect certain interdisciplinary information, cutting
across the fields of chemistry, internal ballistics and structural design which would
permit iiie desizn engineer to make more accurate assessments of rocket performance.
This puggestion led, among other things, to establishing a prcject late that year at

the Guggenheim Aeronautical Laboratory of the California Institute of Technology
(G#4LCIT) in support of certain work of the Thiokol Chemical Corporation, Redstone
Division. The results of various phases of this program have been subsequently
reported in six quarterly progress reports through June 1960. This final report is
(1-1-1.6) . 1ehough it

leans heavily upon them, but is rather an attempt v describe coa.prehensively the

not necessarily a compendium of these previous reports

type of structural complications introduced by a viscoelastic material and provide
certain background irformation to assist the analyst in evaluating the structural
integrity of a solid propellant rocket grain.
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From the engineering standpoint, the problem areas have been separated
into three catagories: (i) characterization of material properties; (ii) analysis
procedures; and (iii) failure criteria. As is true with the conventional engineering
materials, these areas are intimately related, but with the underliying new feature
being the viscoelastic character of the solid fuel itself. Emphasis has been placed
primarily upon engineering application as an end aim, and for this reason many
interesting scientific excursions have been deliberately by-passed.

It is a pleasure to acknowledge the cooperation of the Thiockel Chemical
Corporation, ard eapecially Dr. W. F. Areadale, during the course of this study.
The authors also wish to thank innumerable members of the solid rocket industry
at large and in particular the Physical Properties Panel for the many discussions
relating to the interplay of chemical and structural factors. Within GALCIT, many
members of staff and graduate students have contributed to the subject matter of
this project, and the secretarial assistance of Mrs. Beth Berry has teen invaluable
in the editing and preparation of the progress and final reports. We also wish to

acknowledge our appreciation of the technical vontributions of W. G. Knauss and
L. D. Stimpson. )
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1. INTRODUCTION

1.1 Basic Assumptions

In preparing to analyze a solid propellant rocket grain, it is necessary s
well as expedient to establish the assumptions under which the analysis will be
conducted. Notwithstanding certain glaring deficiencies which will be discussed
later, particularly in connection with failure theory, it is proposed to consider
the medium as isotropic, homogeneous, and continuous. The practical cbjections
to these assumptions are based upon the fact that the viscoelastic elastomer, which
consists of the order of 20 percent by volume, is mer:ly a binder in which are
imbedded various considerably harder particles. Thus basically one does not have
a homogeneous, nor perhaps an isotropic, medium. One must perforce only assume
tizat there does exist, on the average macroscale, an eguivalent medium of this type.

. > For many analyses this approximation will be satisfactory, certainly at the present
stage, although the assumption can be seriously in error in fracture or tearing
where the origin of failure begins on the microscale. Next, the assumption of
continuity is not always fulfilled because it implies that there is always a bond
between the various solid filler elements and the elastomeric binder. Actually the
pullaway effect is well established, wherein excessive tensile stress will cause the
filler-binder adhesion to part. On the other hand the bend will still exist between

- : those surfaces in compression, which therefore leads to (ncn-continuum} load
induced isotropy. Nevertheless, in order to conduct present analyses it is custom-
ary, and at least temporarily appropriate, to assume an isotropic, homogeneous
continuum.

The second assumption is that the strains viill be sufficiently small that
infinitesimal deformations can be assumed, Actually for the loads and geometries
used in present motors, strains of 30 percent are frequently computed {rom infini-
tesimal theory, which certainly pushes the limit of validity for this assumption.

On the other hand, finite strain analysis, even without viscoelastic effects, is far
from simple. Considering the widespread knowledge of infinitesimal deformation
theory and its relative ease of application, it is-considered appropriate, pending
some later qualifications, to begin at this point.

A‘l a third assumption, it is appropriate to neglect inertia forces,due to
straining, during ordinary viscoelastic deformationa. They are usually highly
damped and exponentially decaying, although in certain cases, such as possible
stress wave propagation through the grain due to burning phenomena, this particuiar

assumption might have to be reevaluated.
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The final auumption, which is chosen for analytical simplicity, relates to
the geometries chosen for investigation. This one is not in principle as restrictive,

depending primarily upon the time the analyst can afford to devote to analysis which

already incorporates certain simplifying assumptions. Thus one is not surprised

to find the majority of examples confined to thick-walled right circular cylinders

or spheres. On the other hand such a napproach is not unreasonable; it follows the

engineer’s usual approach of developing his intuition by a careful study of idealized
situations which then permit hiin to make judicious and considered extrapolation to
situations where analysis is hopeless or uneconomical.

In summary then, the assumptions currently to be considered are:

1. the viscoelastic medium is isotropic, homogeneous, and
continuous;

2. deformations are sufficiently small to be considered
infinitesimal;

2. inertja forces, due to straining, are neglected; and

4.

idealized geometries are considered for which analytical
solutions may be obtained.

1.2 Review of Elastic Analysis

As a point of departure, let us collect the appropriate relations used in

formulating the governing field equations for stress in the theory of infinitesimal
elasticity in rectangular coordinatesu'“, where u {or v, w) is the small dis~
placement in the x (or y, z) direction.

Equations of stress equilibriums:

30y , 2Twy | 3Tm

EXS L) B 9 +X =

2%, . 20y . 3T {1.2.1)
Shvy L Y L8 4 =

3% T oy T 3z T=o0

3Zxg I 20 —
35+ T3z =0
Strain-displacement relations:

el M Vv
“=3% 0 W=30+30
(1.2.2)

7
€, = — — oV 3" 4
44 3\& ) Yn__a_z_ + W
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Stress-strain relations:

EC,=0,~-v (0 + 0) '
(1.2.3)

Ec=0;-v(0,+0))

M f,,:: Ty

M Y’,S T,' S

T e e b
v A : R
gl LRI A
. .
]
. — r
- LV L AN A A r ¥ ’ ~ Yeln
3 ’ » Ft ,e “ o 3
RSN "y » - 'y

! -
A Va= Ty .

- The preceding equations are seen to form 2 set of 15 equations in 15 -
v . unknowns, where it is important to recognize that only the lant set --those con~ ;’“
: necting stress and strain--contains or are influenced by the maserial properties o
& Young's moculus, E, and Poisson's ratio, ¥ . Thesc equations may be formally
:: simplified to give three equations in the displacements, '
- 2 [3u a\r LW % Fu uls ks
= . . 53 [ 3y }+ (l 2”)'. ShE + 3yt + 555 + x =0 r;__

& i
: 3 [3u_ 3v >w Fv  Pv  Fv, i-2y (1.2.4) o
' ‘5’[ o> Dy ]+(l 2")[ ETE az’]* “ 1=0 ; !
: > [3u,37  ou Sw, Fw 3 ur] 1=2¢ > _ o o
g ‘5"’[ =" 3’ 32 ]*(' 2’){ ETo > E R + M Z <
.: e
, by solving {1.2. 3) to give the stresses in terms of strains and inserting the results e
into (1.2, 1) which become strair equations of equilibrium. Then (1.2.2) is ‘_

- substituted to give the three displacement equations. Alternately the equations can A
'. be formulated solely in terms of stress by inserting (1. 2. 3) into (1. 2. 2) to give _
A . stresses in terms of displacements; by carring out various cross derivatives, the ,,
u displacements can be eliminated to give the equations of compatibility, viz -
. R X L)

) x 220 -

FAVG + T =0 3 (Nt 3;95 o (1.2.5)

: 20 _ '8 ;
. (1+9) V70, + Sz =0 » (149 Tyy+ Sxay © ‘ :_
- . > . .
where V = g‘,i» ?y‘+ %;; and @= 0,+0,+0; . The choice of .
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which system of equations to be used depends usually upon whether the boundary
conditions are given in terms of displacements or stresses. (Corresponding
equations can also be given for cylindrical coordinates, see Section 3. 3. 2).

As a matter of philosophy, the analyst must usually inquire as to whether
he is mainly interested in stress {strain) or displacement, and in order that he be
able to solve the appropriate equations, he needs only to (1) run laboratory tests
to determine the material nroperties E and 3/ , (2) solve the governing field
equations for determining the stress everywhere as a function of applied load--and
thus its maximum value, and (3) using an appropriate failure criterion, e.g.,
maximum stress, deduce the applied load at which this maximum stress is reached.

The purpuse of the foliowing sections is to illustrate how the equivalent steps

are carried ou’ when the material is viscoelastic.
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2. MATERIAL CHARACTERIZATION i .

In order to predict the response of viscoelastic materials to applied stress,

it is necessary to know the elastic and viscous parameters of the material as a

function of time, rate, and temperature. In principle these parameters may all be =

combined into a generalized stress-strain law such that the strain (stress) may be
calculated or deduced for an applied stress (strain) as a function of these parameters.
When it is justified to assume this behavior is of linear form, based upon experi~
mental evidence, one can view this association between stress and strainas a
transfer function having the property that when it i multiplied by a linear functional
of strain (stress), it genezates the associated linear functional of stress (strain). :.
: We procesd to consider first the more familiar behavior of metals. :

2.1 Operational Concept for Stress-Strain Relations

1

When a uniaxial steel tensile specimen at a moderate temperature is

stretched, it is observed that the instantaneous strain is very nearly proportional

T A Ty

'R
.

[
)

to the applied stress up to the vield point; and that if the bar is unloaded the same

law is followed. Consequently, we say the material obeys Hooke's law in tension ) . .
up to the yield point and write

i
NS
il
P

g=E€ (2.1.1) :

IR Jadiel |

in which (f and € are based on the original specimen dimensions as in the usual
engineering sense.

T
E

The proportionality constant, E, which represents the slope
of the stress-strain curve, is called Yourng's modulus or the tensile modulus®.
This law can also be written in the inverse form

DO= € ' (2.1.2)

The proportionality constant D is then commonly referred to as the tensile

compliance. It has beer found experimentally :nat the above law holds for many
materials, particularly metals, as long as the strains are small.

* Poisson's ratio, ¥ , the ratio of transverse to longitudinal strain, is customarily
measured by resistance strain gages.




-7.
It is evident that if a material which obeys ijooke's law is held at a constant

strain, the stress also remains unchanged with time. However, when a visco-
elastic tensile specimen at room temperature is stretched and held at a constant
strain €  (stress relaxation test), the stress ((t) necessary to maintain this
elongation decays with time. In other werds, the tensile relaxation mecdulus,
E(t)s C(r)/ €, decreases. This situation is illustrated in Figure 2. 1a;
behavior at constant stress is shown in Figure 2.1b,

In addition to strong time dependence, the mechanical properties are greatly
affected by temperature. Below a temperature, T_, defined as the glass transition
temperature, the propellant is glassy and behaves as a brittle bedy obeying Hooke's
law. Above this temperature, however, the respoase is time dependent and varys
considerably with temperature. This behavior leads one to formulate a general
functional relationship between tensile stress and strain which includes both time
and temperature dependence for temperatures greater than T‘. However, it has
been found for many polymers, particularly plastics and rubbers, that these two
variables can be considered separately if the temperatu-re range is not too great.
For example, if certain material constants are known at one temperature, it is
possible to predict behavior at arother temperature by simply shifting the time
scale. Sirnce composite propellants are filled rubbers or filled plastics and double-
base propellants are plastics, it is expected that the same rule should hold. On
this basis therefore, only the time dependent behavior at a fixed temperature wiil
be discussed, but will be followed in later sections by an explanation of the method
used to change to a different temperature..

Expanding now the simple stress-strain relation givenby (2.1.1) for a

simple elastic behavior to a more general time dependent behavior one can write
o, [ow) = O, lewt)]) (2.1.3)

where O, and O, represent algebraic and differential operations on J{t) and €(t).
For example, when Hooke's law (2. 1.1) applies, the operators are the simple
constants Ol =] and Oz = E. It is important to note, however, that these operators
are not always linear. Indeed for large deformations of some metals, a more

realistic elastic is for example
O=(-2ve)n (1+¢) (2.1.4)

where ¥ is Poisson's ratio. Inthis instance O,isa non-linear algebraic operator.

....
.
L

"W ,-




e e TN T R N R K _fwr—qu TR St ‘_“1.. w:—eﬁ-v L."i "I“"“:":{;":“
EI?;'.%}"..”_."(:,.“T;*Z‘JP‘G »-"-“5:1?‘"."‘.‘1’:;‘"‘:7*;5*: TN, S N b e

i : :.

—'! s -
)
Ay .
-8«

e A simple time dependent extension of Hooke's law is to consider stress T )
- -

N . : . .
ek proportional to both strain and strain rate. For this case, (2. 1. 3) becomes

- :
- ,:
-‘.-" -
b guy= 7& +B.€(t) (2.1.5)
o "'

in which E and 1, Are proportionality constants. An important implied property
of the differential operator is that it is linear and therefore obeys many of the

o
YRR

T
TN
.'-u‘
*

Py
’
275 S

ordinary rules of algebra, such as association, commutation, and superposition.
This allows us to write

"-,
Cila
. .Q .«
P

.

. . -~ L A AR AN
RIS B, : | PSRRI S PO

E oty=[nd-+= Jew (2.1.6) 3
:‘-‘ and hence identify ; ‘
R o b
Oo=! ;3 O,= 1(,-3; +E, (2.1.7) »L

If we now consider a creep test in which a constant uniaxial stress,

- is applied to a material following (2. 1. 5), the resuiting axial strain can be
- calculated simply by intepration.

O -

= o

Assuming the specimesn to-be unstressed and ,
unstrained at time t # 0, we obtain

: A . o
e)=-L(-e" ) (2.1.8) {
=, 5 . .
where it is convenient to define a retardation time, ‘z'. such that :
T, = —’—é’— (2.1.9)
v

the creep compliance D(t) is therefore '
€y _ - -
D(f)'—: _6;._= E‘(l-e )

. Dot E (2.1.10)

A schematic plot of D(t) is shown in Figure 2.2. It is seen that D(t), given by

equation (2. 1. 10), is qualitatively similar to the cre¢p compliance shown in
Figure-2.1 for an actual propellant.

Following the ‘general evaluation technique as applied in this example, we
see that: (a) the material was characterized by (2. 1.5); (b) the stress analysis

was made, in this uniaxial case = P/A, or load divided by initial area; and

(c) a failure criteria must next be applied. If for example, fracture occurs whena

R is reached, the time to failure for an applied stress .
0’° is easily computed from (2. 1.10) as

critical rupture strain €
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o and the analysis is completed. =
& - Unfortunately however, the stress analysis is usually not this simple, nor =
- ) is it possible to describe accurately the complate stress and disp"lacement behavior . 5.
’: of propellant by such a simple relation; it is therefore necessary to go to more -
A complicated operators. It turns out that if the degree of complication is such that . ‘_:"
" the actual stress-strain response (2. 1. 3) can be adequately described by more *
¥ general linear operators cof the form (2. 1. 6), the mathematics involved in solving , o
stress problems is greatly simplified. This important fact therefore provides the ) .
impctus for investigating possible representations of the mechanical behavior by " -
linear operators and their associated mechanical models. : -
2.2 Linear Viscoelastic Representation {
" We now define a special generalization of (2. 1. 3) such that o and O, are : :
- taken to be linear differential operators. In the literature such a stress-strain : .
law is called a linear viscoelastic representation®, and for a simple tensile test B
is written ’ -
[P"dt“+ +RgtR]ow= “"At-* + 5+ Ve Y2.2.1) o 1
' Lo}
or more compactly :
. H .
[P 1oy =[Q]ew) (2.2.2) ( N
-
wherc P" and Q" stand for the bracketed operators o and o, respectively, -l
d 'dt is a linear operator that represents the xth derivative with respect to time, . .:‘
and P; and q; are experimental material constants which are obtained by methods -
to be discussed subsequently. : !
>
- Pd )
* If a time dependent stress produces an associated time dependent strain, then
if doubling the magnitude of the stress holding the mede shape of the time variation

the same also doubles the strain magnitude withoit changing the shape of its time
dependence, the material is said to be linearly viscoelastic,
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The relation (2. 2. 1) has been verified experimentally for small strains
over a wide temperature range for many unfilled polymers. Even though composite
propgllantl are essentially highly filled polymers, it is nevertheless expected that
they would exhibit more or less of a linear viscoelastic behavior depending upon the
specific composition.

Before discussing various specializations of (2. 2. 1), it should be remarked
that the same form of a stress-strain law is found to hold for hydrostatic pressure
and volume change, and for shear stress and shear strain in a simple shear test.

Thus, the response of an element subjected to hydrostatic pressurization is
represented by

[(Pigm =[xy (2.2.3)

where V(t)lVo is'the volume change per unit undeformed volume due to the
hydrostatic pressure Up(t). Similarly, write

[rlzty=[alr(®) : (2.2.4)

in which T (t) is a shear stress and Y (t) the corresponding shear strain.

P, Q, P', Q' are of the general form of P" and Q" shown in (2. 2. 1), but, of course,

with different experimental material constants, Equations (2.2.2), (2.2.3), amd
(2.2.4) are analogous to the elastic stress-strain laws, since for an elastic body
urdergoing small deformalions we can write

: simple uniaxial ternsion: OC=Ee ; (E = Young's modulus)
hydrostatic pressurization: (=K —-\-,- 3 (K = bulk modulus) (2.2.5)
L
shear: T=u4¥7 {4 = shear modulus)

Similarly for a linear viscoclastic material we have

simple uniaxial tensions o= 2= ew)
hydrostatic pressurization: o (ty= %..—u(t (2.2.6}
shear: T)= —%—Y(t)

where the association of E with Q'"/P", etc., is obvious®,

* This operational notation, e.g. Q"/P", is purely formal and represents an

implied form of integration. Its actual significance wiil be explained in the
subsequent section on models.

——

P
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It may be remarked that a purely mathematical approach to linear theory '
does not restrict the form of the P, Q operators. Howevezr, B‘ot(z' 1) has used N
irreversible thermodynamics to show that the coefficients are restricted in such a
way that the ratios Q""/P", Q'/P', and Q/P must be identical with the transfer
functions for mechanical models consisting of springs and dashpots. Since the .
operator ratios in (2. 2.6) are restricted to be of a definite form, it is often '
convenient to retain this form rather than multiplying all terms out and separating
Pand Q. Therefore, defining p=d/dt, we shali generally write E(p), K(p) and -
A (p) in place of Q"/P", Q'/P', Q/P and thus maintain this analogy between the
viscoelastic and elastic problems in our notation.

When it comes to actually computing the stresses and displacements ina
linear viscoelagtic body, use will be made of this analogy by working out an .
associated elastic solution in terms of the associated operator form of the material
representation. For the present, however, -we shall continue with a discussion ol_
the rhaterial characterization.

It can be shown that when a three dimensional elastic body is isotropic and
homogeneous there can exist no more than two independent elastic comtants(z' 2).
In their natural form, they are the bulk modulus, K, governing the stress-strain
proportionality for (hydrostatic) dilatation acting alone, and the shear x:nodulu.,
A4 » poverning distortion alone. Similarly, as a result of geometric symmetry,
ouly two independent operator relations can exist for an isotropic, homogeneous, o
linear viscoelastic material, Specifically we have from (2. 2. 5) and (2. 2. 6) the

.y,

- analogy -
M _u(P) (2.2.7)

R

_i K= K(P) (2.2.8) -
Engineering analysts frequently find it convenient to solve elastic problems in terms
of Young's modulus and Poisson's ratio which are related to K andu , and the

viscoelastic associations by

3 K+ A IKE)+MP)

. _ 3K-2M 3 K(P)—-2.4(P)
V= ekv2A | GR(py+2AP) {2.2.10)

The choice of the various alternate forms depend upon which operators are known
from experiments. We turn now to specific representations of viscoelastic media
and their associated operator equatjons, .
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2.3 Model Representation ’ Q¥

f
Yats
'y

Pl
[ AN

As previously mentioned, Biot‘z' 1 has shown that the operator equations
(2. 2. 6), which define the stress~strain bzhavior of a linear viscoelastic material, =
e ‘ can be represented diagrammatically by mechanical models that exhibit the same : i
E : macroscopic behavior(z‘ 3’. It is important to emphasize that these models will
. give a description only of the phenomenological behavior of a material, ard usually
tell nothing of the complex molecular processing causing this behavior. However,

by
3

A 1
Vot

[y L
. .

.. . they are useful for illustrating the physical significance of an operator equation and

are a convenient means for constructing an operator in order to approximate
observed viscoelastic behavior. :

k4

2.3.1 Finite element models ) ’

The simplest models are those which can be constructed by arranging a few

e
-

spring and dashpot elements in different ways to generate various characteristic
responses.

Hookean model. - The simplest model representation of an elastic body has
already been mentioned. This Hookean model consisting of a spring is shown in -

Figure 2.3. If we denote the spring constant by . modulus, m, the applied force
by stress, ¢F, and the extension by strain, € , we h=ve a model, following (2. 2. 6) ¢
which can be used to represent either tension, shear, or bulk behavior,

Newtonian model. - Another simple model may be used when the stress isa :

N TP RN St Pl

function only of strain rate, as in a fluid. Here the constant of proportionality is ’
represented by the viscosity, n , of a dashpot as shown in Figure 2. 4. It is
characteristic of this model that with a constant stress the strain is unbounded with
time, i.e. unlimited flow.

Now since the response in shear, tension, and bulk is assumed to be linearly
viscoelastic, the stress, 0", and strain, € , used with the models will, for con- -

venience, be usually assumed to represent any one of these three types of loading®. :

* When applying the operator =xpressions relating 0 and € to experimental data or
to the solving of a stress problem, different symbols should be used for tension, . .
bulk and shear. We shall use the symbols propcsed by the Committee on Nomene ¢
clature of the Society of Rheology (H. Leaderman, Trans. Soc. Rheology, 1, 213,

. 1957) in this report {with the exception of the shear modulus), which is given in the
following table:

Type of
Deformation | Modulus (= 0/¢) | Compliance (= €/¢g)

unspecified |
simple tension
bulk

shear

T
.

l
1 ~a

ikt A
"y

{
2 X3
wpg ™
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However, there is an exception which must be no’ed for certain models, depending ‘
. upon the loading condition. Specifically, when a 1+ aple shear stress is applied to ) g

an uncross-linked polymer element, its deformation isicreases inefinitely. However
if this same polymer is subjected to a hydrostatic pressure the volume cannot ) A
decrease in an unlimited manner, but must approach an equilibrium value., Conae=

LS
quently, a model that evinces unlimited flow behavior cannct be used to define an ”
operator equation relating hydrostatic pressure (stress) and relative volume change K
(strain). In contrast, a cross-linked polymer specimen subjected to a shear stress -
will always reach an equilibrium deformation. We therefore have the rule that in _:"-
describing tersion, bulk, and shear response for a cross-linked polymer, or bulk :
.response for an uncrosselinked polymer, a model should be us+d that does not
. ) " exhibit unlimited flow under stress. : ;Z;
.: ' Voigt model. =« Turring now to the first of the combined element models, ':f:
, consider a spring and a dashpot arranged in parallel as shown in Figure 2.5. In :
_;m order to derive the appropriate operator equation for the model, write an equation ‘ :
3 of stress eguilibrium in which the applied stress is balanced by the internal stresses vy
::.‘_ - onthe elements, as shown in Figure 2. 5a, and then relate the overall strain {or .
N o extension) € of the element to the interral strains. For the Voigt model, this Lo
:j’i:- Lo step is trivial since the overall strain is the same as in the dashpot and spring. :

- It is seen that equation (2. 1.5), discussed previously, is represented by this model,
F The behavior in standard tests is shown in Figures 2.5b and 2.5¢. Ina
s creep test, the equation for strain is found by integrating the operator equation in

,e -"‘!mn'!l‘&l Yoty
PRI [ i ——

which the applied stress is constant. The initial condition needed to determine the
- constant of integrationis € = 0 whent a 0. It should be noted that there is no '
instantaneous strain, whereas an actual propellant does deform immediately

{neglecting inertia effects). The recovery equation of strain is obtained by inte~
grating the operator equation with the stress set equal to zero, and the initial

condition € = €p whent = t,. The curve shows that the model completely recovers ‘
to its original length as t —> . v

Y i L L
LR .

JC

e e

The reason for defining previously the ratio ﬂv/mv as retardation time
Ty 38 in (2. 1.9), is seen by the creep behavior. Here, T, Tepresents a quantity
with the dimensions of time and has the z2ffect of shifting the time scale in regards
to the delayed action of the material. More specifically, it is the time needed for -
- ."the inistantaneous unattained compliance (D, ~D) to be reduccd to (1/e} of the total
unattained compliance D, . For example, when T is large, the strain is retarded !
80 that it increases slowly; whereas if T, is small, the curve shifts to the left and
the equilibrium strain is approached quite rapidly with very little retardation,

i .v-a{
MR
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When this model is held at a constant strain, as in‘a stress relaxation test, S
the stress remains constant since no flow occurs in the dashpot. Thus, the Voigt
modcl does not exhibit stress relaxation, while a propellant does. With a constant
strain rate, Figure 2. 5c, the stress immediately jumps to a finite value and then B
increases linearly. This behavior also is not representative of a propellant since
the stresi in a real material increases continuously from zero at a decreasing rate.

Maxwell model. = The other possible two element arrangement consists of

arranging the spring and dashpot in series. The operator equation is ottained by o
noting that the stress in the dashpot is the same as that in the spring, and equating
the overall strain to the strain in the dashpot plus that in the spring. The behavior
is summarized in Figure 2. 6%
The integrated expression for strain in a creep test (Figure 2. 6b) shows
that deformation occurs immediately, and that unlimited flow occurs, i.e. the strain
does not approach an upper limit. If the stress is removed, there is an immediate
recovery to a finite strain which remains as a permanent deformation.
This model shows stress relasation behavior in a nianner similar to uncrosse
linked polymers, in that the stress decays to zero at a decreasing rate. For this :
model, the time constant is defined as Tm ® '(m/mm in which 'tm is called the
relaxation time. I! has the dimensions of time and represents the time for the

stress to fall to (1/e) of its original value in a relaxation test. It is, therefore, a

measure of the rate at which the relaxation occurs; for example, if the relaxation. Lo

PR

time, Tt is small, the stress deca):a to zero almost immediately. If the model

is strained at a constant rate, the stressetime curve in Figure 2.6d shows a - :

response qualitatively similar to that of a propellant (I-‘i_gure 2.1). .
Three element model {(Maxwel: element plus spriﬁn_gl. - As the Voigt or

Maxwell models by themselves usualiy possess insufficient generality to represent

W

propellant behavior, it is necessary to form combinations of these basic units in
order to approximate actual linear viscoelastic response. This is usually done by

adding Voigt models in a series or Maxwell models in parallel to form an .arra'y of

* The operational notation that is stown has a two-fold significance. First, the .
expression
< d€
Mwdt  _ MuP&

OC=— =

[}
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-

with pad/dt, can be intexpreted 2s an implied form of integration by the method i 20

- of partial fractions. The integral is found by recognizing that ¢ is the solution N
* to the first order differential equation

d9 . o _.. d . b

- . at t o= M™dt (b) =

in which T__ and m__ are constant if the material’s temperature is co-nltant; .
however, when the femperature is transient these parameters will genezally be ) s

functions of time because of their temperature dependence. In the gere~-1 case of ’
time dependent parameters ‘tm(t), mm(t), integration of (b) yields ©
’S%?s * S:“A- m.pe . —~
o=m.e [ e W dev 4, & C‘]s —Ri— (<) . R
dv P'&—t— : Ty
. -
where C, is a constant to be determined from initial conditions (Cl = 0 for - ::'Z
initially zc.0). With constant coefficients, (c} simplifies to . S
-%[ (Tt dew mebe -
| \e®™ =4y C ]z e d oo
- P 19
A second interpretation of notation (a) is associated with the Laplace trans= \ e
form method, which can be conveniently used when the material constants are ) Ueid
independent of time. The lLaplace transform of a function y(tj is Qefined. as ) et
: A o : . e
_j(p).—.g e Ttyyat &) - > |
. . . . ) - o
5 where the symbol p now represents the complex transform parameter (whose real . VR :..
o part must be positive for convergence f the integral {e}). Operating on the dif- : . oy
" ferential equation (b) with this transform yields ; ey
: - o
= ~Ptfdo ., O de] = bF+-T =mpET
X S My e = -+ = [ e
S Q [dt + T.z m d.t dt PU ‘r. -P (n “:‘
in which we have integrated d 0’ /dt and d€ /Gt by parts and assumed, for simplicity, :-'t:
that ¢ and € are initially zero. Thus, it is seen that a second interpretation of (a)
is that it is the transfer function relating transformed stress G and strain € if
properties ar~ -anstant and the stress and strain are initially zero; namely, with .
£ »s t*-_ caplace transform parameter, e
- M P = ?. (g) s
- 0 -
- Pep €
;- 1f stress (or strain) is given as a function of time, then the time dependent stress S
N {or strain) can usually be found with standard transform tables which associate .t
functions of p with time dependent functions, and thereby eliminate the need for .
a formal integration. When the operator equation consists of a sum of pa.ial
. {ractions, as it does if additional elements are added to the model, then each term i

can be interpreted by means of {c) or (g).
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springs and dashpots. The mathematical relations developed for these models

will serve ar a useful guide in desigring experiments for the testing of propeliants.

L]
. The first of these, shown in Figure 2.7, consists of a spring in parallel with a .
" Maxwell element®.

-

roe"

R Ry

. It will be recalled that the Maxwell model behaves qualitatively like an
uncross-linked polymer in that unlimited flow (or strain) occurs under a contimue

R 1
Y LY

ously applied stress. In order to desc:ribe the behavior of a cross-linked polymer,

a spring is attached in parallel as shown in Figure 2. 7a.

The modulus of a spring
in parallel with one or more Maxwell elements is denoted by m_, the equilibrium

) A

-

modulus. Its physical significance can be seen in Figure 2. 7¢c, since it represents

the long-time modulus of the model under corstant strain. 1In addition, this spring )

£y

provides complete recovery as shown in Figure 2. 7b. Another significant parameter
is the glass modulus mg. it is the effective elastic modulus foz very short loading

times and also corresponds to the effective modulus at temperatures below the
glass transition temperature.

g

Response to the various types of loading shown in Figure 2.7b, 2.7¢, and
2,7d is readily obtained, as before, by integration of the operator equation { or by

the Laplace transform method) {nr creep, stress relaxation and constant strain
rate conditions.

T
[IFETIILL adiuiiiaimiriabiba) X

Five element model - two Maxwell elements plus spring. = The last finite -
element model to be discussed explicitly perrrlitz one to fit experimental data over
a wider time range than that covered by a three element model,
additional flexibility is illustrated in Figure 2.8.

—y

The effect of this

Ir this case, while a second o T
order differential squation relates stress and strain**, the response for creep,

0 e

relaxation, and constant strain rate is seen to be very similar to that of the three
element model.

The intermediate case of a four element model, which is used for uncross~
linked polymers, was not discussed since it can be readily obtained from the five
element model by setting m, = 0. In addition, composite propellants are usually

crosslinked so that the more common condition requires passing directly te five '
e¢lements.

)
* Previously, the series arrangement of a sprin- ad dashpot was referred to as ]
a Maxwell model, however when it comprises only part of a more general model, ‘
it will be called a Maxwell element. . .

*% It is important to realize that this does not reflect inertia effects since the rnots

of the operator equation are always real, which results from having used a model
that includes only springs and dashpots.
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In concluding this section on finite element model representations, it is

U At
s = |

expected that the foregoing models will provide a reasonable flexibility to approxi-

.2 mate propellant response over a limited time interval to the desired accuracyof s

e YT
[

one to five parameter curve {it of experimental data as represented by the spring
. and dashpot materi-1 constants, '
2.3.2 Infinite element models

While the finite element models permit reasonable representstion of experi=
mental data over a limited time ruange, to the extent of the number of unknown .
material constants or parameters .available, it may happen that the time range of
interest is too broad to be represented by a model with just a few elements. Hence
to hold the desired accuracy, but simultaneously to extend the time interval of data
representation, the only recourse is to add additional elements which, as a practical
matter, is freyuently impractical for stress analysis®*., However, it is useful to
consider the limit situation of an infinite number of elements which will yield
{mathematically) perfect accuracy over the entire time spectrum., . o

Wiechert or generalized Maxwell model, « The first of two infinite combie

TR T

nations, which will be shown later to possess certain reciprocity featires, consists
. of an infinite number of Maxwell elements in parallel with a spring which is used to
. represent a cross-linked polymer possessing an equilibrium modulus. Character-
istically this type of model is used when the strain is imposed as an input by the
experimental set-up, and the stress output is measured. The behavior is illustrated
in Figure 2.9 where the operator equition has been develop.ed from a (large) finite
- number of Maxwell elements which has subsequently been increased to infinity thus
converting a finite summation to an integral representation. The limit is taken
such that the stress remains firite, as indicated in the figure.
Instead of having a finite number of discrete parameters, we now have
introduced an arbitrary function, H(T ), usually called the relaxation spectrum.
1f H{(t)and m, are known, the stress-strain law is completely defined for all
types of loading. The techniques used to determine H(7) f{rom experimental data
will be discussed subsequently, but tnhey amount essentially to.:(a) imposing a known:

RL e

strain, €(t), e.g. €,¢ (b) measuring the stress, ((t) response experimentally and
fitting the data with an analytical curve; (c) substituting into the stress-strain
relation (see Figure 2.9) for (t) and €(t); and (d) solving this integral equati
analytically or wumerically for H(t). :

Lok SN
u‘ .

* Vario&; Rroposall ha(f gfen advanced to use electrical analog techniques (e. g.
Blizard'™ "’ and Gress'“ “’) with only limited success. . .
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Integration of the .gergeral operator equation for the constant strain case X
may still be carried out through the usua! procedure for partial fraciions or . i
application of the Laplace transform, even thougk .here is not a finite sum of
terms. With this latter method, the solution for zero initial conditions is
obtained immediately, which gives the relaxation modulus in terms of the relax-
ation spectrum®. This modulus evaluated at t = 0 is defined as the glass modulus,

- : m‘. in accordance with the previous definition when finite element models were

A ~ considered. The equilibrium modulus m, takes on the same significance as before.

For constant strain rate, stress can also be easily determined by means of

the Laplace transform. The result is seen to be similar to the relaxation modulus.

In fact a very interesting relation is shown to exis*, namely that the slope of the

I

4 Pl
o Mo 2
M «
_.'.t LA

o

stress~strain curve is a constant strain rate test, é(t) = R is equal to the stress
relaxation modulus evaluated at ( €/R).

This relation is independent of the relaxe~

ation spectrum and thus depends only on the assumption of linear springs and dash-
pots.

s o 8 M MR
5

R

T
.
v

Indeed, this same correspondence exists for the models with a finite number .

-
of elements. Such a relation is very useful since data from these two types of tests )
" . can be used to check the 2ssumption of .*nearity.

.
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* This will be showr; to illustrate an application of the transform method to the

integral representaticn. In accordance with the previous footnote, the transformed b
equation (equation (i), Figure 2.9)is

Tk
‘J

o(p>={m+§____‘*(‘t"’ ELA 100 (a) :
Jd P ) . ‘
in which p is the transformation variable and all conditions are taken as zero for
.. t £ 0. Even though this is the transform of an integral expression rather thana
o - finite sum of terms; the staadard procedure can be used; the only additional . i
)\ restriction is that che integral' converge uniformly. For constant strain input,
€y its transform is E(p)= € Ip and the transformed equation becomes

Tey=[ e+ &"p’f?-: e, ®)

The inverse transform is found using the relation

Y
o
A

‘
'h “ .'.« .

o
Y .
1
]
"o

1

H(T) dT [un:)e'Wd.t]

P + ‘t" T T (c)

which yieldc the time dependent relaxation modulus
- 8. [me-rg'r ume el

miy= ===
(see also Fxgure 2.9)
Experimental data is obtained for the relaxation modulus, G(t)/ e o’ and the
equlibrium modulus is estimated at long times from the same data. Thus, in .-
principle everything is known except H( ), for which the integral equation is
solved analytically or numerically.
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Kelvin or generalized Voigt model. = The other infinite element model can

. be generated as shown in Figure 2. 10 by arranging a large number of Voigt elements =
' and a spring in series. In fact, it turns out that the linear viscoelastic behavior ' N
generated by the Wiechert model can also be defined equivalently by the Kelvin . -
model®. Therefore, in principle, only one method of representation is actually
needed to solve stress problems, although both are sometimes used for experi=
mental reasons and cross=checking of data. Also, the Kelvin model is customarily
used wheri the inputlfnnction for the experiment is stress and the measured output S
is strain, . -
.o For example, reference to Figure 2,10 shows that when strese is given, as
h in a strain retardation or creep test, the strain is a relatively simple function of
the model parameters if the Kelvin model is used. Conversely a Wiechert repres ’
sentation is natural and simpler for a stress relaxation experiment, -

Because of the close correspondence between the Wiechert and Kelvin models,
the latter will not be discussed in detail. However, some simple correspondences
are evident. -It is seen for example that spring constants are written in terms of
compliances, ki’ rather tl.xan their reciprocals, m;3 similarly, the dashpots are
defined by fluidity, ¢ ., instead of the reciprocal N ;e .This choice of nomenclature
exemplifies the similarity in the corresponding mathematical representations of the

ORI L R

3

oA
',

- two models, Thus one may see that llkg = m, and llme = ke' Many other more
involved expressions relating the infinite element models can be found in the litera=
ture oxn linear viscoelastiéity(z' 5,. They are.particuiarly uséful in checking the

REX

L

* The equivalenra of the Wischert and Kclvin mddels Caii be olwwn when they have
either a finite or infinite number of clements. However, there are a couple of
conditions which must be satisfied in order to do this, One is that the finite and
infinite element models must both have the same basic behavior in regards to limited
or unlimited strain, In particular, if m. # 0 in the Wiechert model, then the equiva=
lent Kelvin model must have a spring adjacent to all the dashpots, Similarly, if the
Wiechert model represents uncross-linked material {me s 0), then the equivalent v
Kelvin model must have a free dashpot in series with the spring kg. The other -
condition is that the number of elements in each model must be the same.

To prove that the finite element models are equivalent, it is necessary and suffie
cient to show, as will be carried out later, that the operator equation for cach can
be written in identical form. That is, the same derjvatives must appear in both
numerators and in both denominators. The coefficients of the derivative terms

;. dP/at™ will, of course, consist.of different parameters. However, by equating the

-2 coefficients of the same derivative terms in each model, relations between the
parameters of the models are obtained. With an integral representation, the corree
sponfience between inodel parameters is obtained in the form of integral equations
{see equations 2.4.15 and 2. 4. 16).
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theory by comparing data from various types of tests, It is important to note,
however, that such simple relations between the short and long time limit moduli i
generally do not hold between the time dependernt quantities of the models, For
eump.le. it is not generally true-that the relaxation modulus is the reciprocal of .
the creep compliance,

Ladder model, ~ There is another particularly useful arrangement of spring
and dashpot elements which does not exactly fall into the previous categories, For
years, rheologists have been compounding elements into arrays analogous to
electric circuits, with little thought to the implications of polymer molecule kines
matics. Because of the intrinsic awkwardness of these models, it has been neces=
sary to achieve adequate material representation through the use of broad distribution
functions or at best four or more element networks.

In 1948, Blizud(z' 4 proposed what has come to be known as a realistic
network representation of an array of polymer molecules, He suggested that, since
a segment of a polymer molecule is actually imbedded in a medium of average
viscosity, the viscous forces or dashpots be distributed uniformly along the chain,

tepresented by a long elastic spring. Furthermore, he assumed that all segments

are equally elastic and contribute equally to sharing the stress reaction (affine
behavior). Thus he was able to arrive at a model based on only three parameters
which provides an excellent representation of material behavior; this is iknown as

the ladder model (see insert). .
' .
g ! x. is the coordinate of the tail of
e 1 ! the ith stretched element, ‘
X 2w —-
x_ & 8, is the length of an unstretched '
=3 element
2 T an/m is the retardation time of the
%, i 4’ viscous strcsszes
X & ' §_  is the unstretched length of the
C i 4 € glassy segment
s L] m_ is the modulus of the glassy
X € segment
»Ivm "“’;WJP' ‘
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These equations may be solved by the usual methods applicable to difference
equations to yield the transfer function of the network, which is the ratio of the
Laplace transforms of the stress output to the strain input,

b

'—z!- . t L,‘

The following kinematic relations stem from the topology of the networks ‘ ::::

. Xe=Xaoy o X Ag N L=
LT TOL 3 WA e b

* % % Rg= K soE

5 R (2.3.2) P
- Xg - %o : 2
€= oYY (2.3.3) P

Lot
¢

A TR N .
. s LI a,
PRI

- S
R
. In arriving at this solution, it is assumed that n 7 0* — ?_'o* and n-fo -+ L J

for large r. Fin2lly, m, L, and m_ are eliminated by the introduction of m e and
me, the overall rubbery and glassy moduli of the network. Note that m_ i mge .
because the strain of the network is referred to (n [ + 3 ),wherea- the strain of !

the glassy element is referred to 1.

The importance of (2. 3, 4) lies in the fact that this simple function, based
on only 9ne parameiter besides the usual limiting moduli, i.e. T o provides an
excelient representadisn of acrual duta in many cases. On the other hand, the
presence of an essential singuiarity in the denominator makes all analytic inversions
intractable. The associated creep and relaxation functions are being calculated
numerically at the National Bureau of Standards. '

2.3.3 The dynamic behavior of models,

In the previous sections, the operation equations and the operational moduli P
and cqmplianées were presented for various models which i.mpli'citly related stress —

(DR

to strain. In addition, time dependent solutions were given for certain simple

s

loading conditions such as the variation of strain with time when a constant load was
& applied, or variation of stress under constant ap{;lied strain, ) The former, for .-
- example, was called a creep test, and the ratio of strain € {t}) to stress o’ was
E defined as the creep compliance, k(t).
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Now in addition to the use of this kind of loading, there is another con=
venient method of determining model parameters by using complex (or #vmnamic)
moduli and compliances that relate sinusoidal time~dependent stress and strain.
They are obtained by formally substituting iw ( W = frequency, i = ﬁ) for the
time derivative symbol p = d/dt in the operator equations given in Figures 2.5 to

2.10 and separating the real and imaginary parts. The symbols will be similar to

those used previously in the general prasentation, except that complex quantities
will.be starred such that m?* will denote complex modulus, and k* complex come
pliance. When these are used for a particular propellant, it will be necessary, of
course, to indicate whether they rep‘resent simple tension, bulk, or shear behavior,
For example, the complex shear compliance is denoted by J¥{w), and the complex
shear modulus by M H{w).

For simplicity, complex notation is used, e.g. sinusoidal stress is written

as t)’oei “t and sinusoidal strain as eoe‘ Wt i stress is given, 0, is considered

to be a'real constant representing the maximum amplitude of the sine wave, and

e‘o is a complex function of frcquency, w . For O, = l, e 'o is identically
the dynamic compliance k*. Similarly, with strain given, € ° is real and 0'°‘

is a complex function of frequency which is identical with the dynamic or complex
modulus when € °o® 1. As another matter of notation, it is convenient to represent

the modulus by its real and imaginary components m*{w) and m"{w}): thus

e _ iwt T
M (w) = Mw)+ i Mw) = .% = _%:g-m-s .9‘.:. (2.3.5)

and the compliance by its real and imaginary components k¥(w) and -k"(w):

wt -
L J 4 . p¥ € e:e"’ €.
® (W= ‘&(W)"’L&(ﬂ)’z-&—:m:i— (2.3.6’

Because of v° cosity, there is a phase angle bctween stress and strain which is

> ”,
= tan' AW 4 o Rlw)
$= Tan o o= tan ) (2.3.7)

green e -
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The strain lags behind the stress so that m*{w), m"{w), kW) k" (w}) are all .
- positive functions of frequency. These complex quantities may also be written .
in the form o
. M (w) = | m*| etd (2. 3.8) :—
_ W =k et _
where
jm®] = Ym'?*+ (m*)* (2.3.9) B
1€ = TR +(RP (2.3.10) o
Since
m®(w) = L == S o ) 1wy = 1
€ ‘®° {2.3.11) L
| 3
it follows that L
I'm'l\‘&.l =1 2.3.12) :}:
which is useful in converting data from compliances to moduli or visa versa. R
i In order to illustrate the procedure for determining the complex moduli and i
compliances from operational erpressions, consider as an example the Voigt model. -
. From Figure 2. 5a, the operator equation gives )
m@ey=m, (T ,P+1) : (2.3.13) . .
-
Letting p s iw gives the complex modulus s
m (W)= M, + LwMm, Ty (2.3.14)
from which the real {m®) and imaginary (m') components are
: m'=m, (2.3.15) -
m'= m, T, w (2.3.16) )
This representation thus produces a real part of the modulus which is constant,
and the imaginary part which is linear in frequency. )
14
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The cperational compliance is the reciprocal of the. modulus, namely

=t i 4 : .
() e~ mvr.,mp“"ﬁ"ﬁ' (2317

Again, letting p = iw

() = e 01m WOTY

..___.._______.“* oT2) - (2. 3.18)
one finds .
- .Q'z...__.i:__._. .
(| -+ wgt':) (2. 3. 19)
- w‘tv*'
= v e o

(2. 3.20)

where we have defined k= 1/ m,. .
Complex moduli and compliances for several models have been computed

and are given in Figures 2.11 - 2.15. It was mentioned previously that when model

response is to be related to test data, it is most convenient to use models consisting

of Voigt elements in series if stress is given; while if strain is given, models

consisting of Maxwell elements in parallel should be used. Similarly, itis dea-lrable

to represent the dvnamic behavior of Voigt type models by complex comé!iancel

and dynamic behavior of Maxwell type models by complex moduli. Except in the

case of the basic two-elemen: models, this rule is followed in presenting the dynamic
moduli and comgliances.

2.4 Spectral Distribution Functions

We have seen that there are several ways of characterizing a viscoelastic
material. It may be represented by various forms of finite models, or by a
spectral distr?bution cf the relaxation times associated with a Wiechert, XKelvin or
ladder model. The distribution function may be thought of as an unknown transfer
function by which the stress and strain are related. If a known stress (strain) is
imposed and the strain (stress) response is measured, then the third unknown
element-~the transfer function connecting them-~can be deduced.

Since the cheice of r. .del used to represent a given mechanical behavior is
arbitrary, it follows that the various models must be related, both topologically
and analytically. The topology of network mo-iels is an as yet unexplored area,

which will be continually pursued as an important development phzse of linear
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viscoelasticity. The analytic nature of network model representation by distribution
functions permits a mathematical investigation of the character of the interrelation,
One of the most direct ways of determining the spectral distribution functions

is to apply a constant strain input, €_, measure the uniaxial stress response, O(t) .

°
{and hence the relaxation modulus E(t) = O(t) /e o)' and solve analytically or
numerically for the resulting transfer function, or explicitly, the integral equation

for H(T ) in the Wiechert model, In particular, from Figure 2.9, we have

om=[e.+ SLH ) “t d lem , : (2.4.1)

-.---4--.&-)

which for the case of constant str_in, € o’ gives

=@t)= om Eq +S WD) ey (2.4.2)

with the normalizing condition (Figure 2. 9)

Ee-=e = { T Hmar (2.4.2)

An alternate approach for determining the distribution function is to apply
a constant stress, (0, measure the uniaxial strain response €(t) (and hence the
creep compliance D(t) = €(t)/ o'o), and solve analytically or numerically for the
resulting transfer function, or explicitly, the integral equation for L (T} in the
Kelvin model. In particular, from Figure 2.10, we have

L(TYMT
e(t)y=1]1D e . 4.
[ ’4 S(dt !}t;lO'(t) (2. 4. 4)

which for the case of constant stress, ¢, gives

€ (t)

L]
= ‘D‘~»S‘t“l.(’t:)(|—e""“t
2 -
with the normalizing condition (Figure 2. 10}

D)= )dT (2. 4.5)

De-Dg= &‘t" L(T)dT (2.4.6),

Inasmuch as either of these analytical representations of the distribution
functions apply to the same material, it follows that one may convert the analytical

representation of one transfer function, say B/ E(p), into the other, €(p)/ T(p)s
which must be the reciprocal. The subsequent section discusses these relations
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2.4.1 Model interrelationships.

The relation of the distribution functions H() and L(T) is easily established
in principle by using relationships between the Lagplace transforms. Specifically,
the transforms of (2. 4. 1) and (2. 4. 4) are, respectively

oTEe) _ P dr PHl) du
o= T Per T = et (B )S.P*M KT (2.4.7)

o D+ Sx.m dr (2. 4.8)

- LI(m)
o®) P ,z-t == D¢ +(0 D)S P"""‘ dum

where the change of variable T = 1/ has been employed along with the definitions

HITY= M) = (B~ E) WX

(2.4.9)
LX) =LA = (De=- DL (4) (2. 4.10)
which requires in the normalizing functions (2. 4. 3) and (2. 4. 6) that
- R -
S Hd (=1 S.L’w)d(xm,u)s 1 (2.4.11)
( ] -
Multiplying (2. 4.7) and (2. 4. 8) together gives the relation
- P H(4) du (M) dm .
[Ee+ (=, E‘)R ) s P+ na D‘)S s ]=. 1 (2. 4.12)
which, using (2. 4.11), is equivalent to the more symmetrical form
(== "S ) g ][og+ (O o‘;& LW 4] =1 (2. 4.13)

Note that from a limit check at large and small p, respectively, one deduces

EeDem 1 ; EgO=l (2. 4.13a)

s0 that it is obvious that if eitner H(T) or L{T) is known, the other can be calculated®.

* By way of detail in carrying out the preceding calculation, note that if we have
two Laplace transforms defined by the relations

qtlP = S.fm et . (a}

wor=(gmeTe ®)
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fics) = S.":'%% dt (<)

The iterated Laplace transform (.c) is known as a Stieltje transform, and has rather
simple invercion properties. If (a) exists and converges, then h(s) is analytic im
the entire s-plane except the negative real axis, where it has a branch point at the

origin. Use may be made of this cut in the principal Riemana sheet to invert {c)
First note that

Ame *ko&féﬂ—f-&- 5 with S=-m-i§, mdo
L J
=L | _$06)12-n+id)
boe S,(t-n)"b w
=L (Jfoxt-mde o7 Sityae
boe &(t-n)% & Tl ) (t-n)%+ g2
- S':’ (1) dt ¢ *$(n+$tan®) S secs d
, T-n w0 \ Tsec*® o
- using  (t-m)= §tan®
= —‘{—‘_’%— +iml fneitane)
= (Tawdt oo d
Similarly « M bw § ?) “@
HRinel™ = g —%—:}f‘ ~ix fn (e)

The integral in (d) and {e) is the principal value. The difference between equations
{(d) and (e) is known as the jump, given by .

e - R(ne™ = 2nifm (f)
Thus, the inversion of (¢) is accomplished siniply by calculating the jump of the

function h(s)/2wi. Hence using the definitions (2. 4. 14), (2. 4.17), and (2. 4.18)
in (2. 4. 13), one may deduce that

8 Su(h)

S T hEm ®

which, using (f}), yields (2. 4. 15) or (2. 4.16).
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After using (2. 4. 13a) and defining

B~ D (2.4.14)

it is found that
8 W

o= —
LU" ['... (‘-— p) g _E.i_‘g.)‘_‘:_s_ ‘+ (‘_ p\‘&ua [Hl‘“)]:

(2. 4.15)
amd also

& 20
[--g ‘)S:..—.__._g (1d8 I+ 0- Yt po]®

where it is frequently convenient to have defined the integrals
L

L (M) C
S.(P)= &:‘F‘n"‘"‘ (2.4.17)

H ()=

(2. 4.16)

(2. 4.18)

-

cr- 2,
)= m) .
S, { S.—F;——-—Qﬂs
We are now concerned with the problem of specifying the various useful

types of stress inputs- and strain inputs and defining the relations among them.,
The subsequent table lists the most important inputs.
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Among these sets the most easily procured data is creep, and the most precise ’s
dynamic response to sinusoidal stress input. It is important to establish relations
which enable one to convert one set of data to the other for the purpose of rapidly
predicting physical behavior.

The relation between relaxation at constant strain and tensile stress at

constant rate of strain. - It may be noted incidentally that there is no
parallel with retardation, since equipment for testing at constant rate of stress rise

is not ordinarily applied to polymeric materials. The ratio of the transforms o*
the strain inputs is given by

5-5&'-'- 2w Crem (2. 4.19)
ret Cra.

where the constant strain rate is designated as R. Since the transfer function is
independent of the strain input, the ratio of the linear functionals of the stress
outputs is equal to the ratio of the same quantities for the strain inputs. Equation
(2. 4. 19) may be recast as

vel.

»
=E ) =T (2. 4.20)

and remembering that the stress at zero time is taken to be zero, the inversion
yields

Oret. E M = A d0tem. do’,.ﬂl

<. o (2. 4.21)

(11, 3

Equation (2. 4. 21) shows that the relaxation modulus att « €/R is the slope of the
tensile stress curve at € . Conversely, relaxation data can be integrated, in the
framework of linear viscoelastic theory, to generate tensile stress date.
The relation between relaxation at constant strain and creep at constant
stress. ~ From (2.4.8) and (2.4.17), it follows that

ec,:"= ew= 1| De+ (DD S,PY] (2. 4.22)
Likewise from (2. 4.7) and (2. 4. 18)

[« ART—

’T:-':—‘ = Er-l-="'FIE¢‘(E¢‘ ALKC| (2. 4.23)

Multiplication of theée latter two equations, using footnote equation (g) and (2. 4. 14)
yields

= )

Derp. Evet. = pF (2. 4.24)
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which may be recast as

1
P - (E‘- =.)Su(p)

o, m- (2.4.25). -

No general inversion can be given for Q r‘p) s but if Eul(p) is representable by a
simple analytical function, then the inversion can often be effected analytically.

1f, 2s is often the case, the analytical representation of E is quite compliex, then

the following numerical formula( -6) may be used for inverliun. Let
= & Sthedt (2. 4.26)
then,

«-n"
§ty=L “5- [ P 7"’)} (2.4.27)

Also useful, for inversion of the Stieltje transform( : 6). is the following: Let

- - -
A= et~ Sﬁ@‘ “ap

(2. 4.28)
then .
=0 .a"'[m.. at
for=L e Lt -ﬁm] (2. 4.29)

Sinusoidal and constant inputs. - Consider now the relation between responses
to sinusoidal strain input.

Similar relations may also be developed relating sinu=
soidal and constant stress input. The constant strain input results in an output
defined by (2. 4.23), and may be inverted to

Orat.

T *Eia=Eg-(Eg-E) (- € Hdinm) (2. 4.30a)
= E+ (E _E‘)S:‘(A) e"l‘ta(w) (2. 4. 30b,
The imaginary part of the sinusoidal input results in
_9_'-3 ‘=Ey, ——,'9—; r-;,-(e‘- E) SulP (2. 4.31)
€, P
~ust
%: Ega= Egsinwt = {e~g)) HVA) we +“:::“A‘:mdt dm

~
As t -, the measured sinusoidal stress becomes steady,

(2. 4. 32)
This actually occurs in
a very short time, and is represented by
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Ou S ut ‘ .
E:"‘"'u E ot {E‘- (g~ E.)S.m H M) d (!m}«ismwt
«»
AUy /
. = E'S;V\ wt + E.Cbs wt
"
R Similarly, the real part results in
T = e
L=t [e,- (2g-=0 58P (2. 4.34)
Ocus. at. .
—E.“.—L = B ae™ E Coswt-E"Sinwt (2. 4.35)
Referring to the sinusoidal strain input cited in the table above, we have
H )
€= c.e""% € coswt+ i€ sinwt (2. 4. 36} !
. ) !
80 that !
. +10 . it , ) '
.- 0 = Gy gt 10sace™ eo(Ecn.u‘..' iBw)=€e (E+IET (2. 4.37) !
_ oc® j
L - O E'=e'+ie” (2.4.38) -
ﬁ Similarly, it can be easily shown that”
e* O
o — =D =D=1iD
- o (2. 4. 39)
- from which it follgws that
E E'D = I'= (E'+ie”)(D-iD") = ('D+ED) +i (eD'-eD") (2. 4. 40) '
5‘-; or
X |= =2p’+="D" (2. 4. 41a)
- eD'= e'D" (2. 4. 41b)
o
{: Thus, the transfer function for dynamic strain and stress inputs are reciprocal.
&
T T e e e T Ll = R T CaC S i Ccair ) 23 ey Yol ey T
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Before completing the relations between static and dynamic moduli, it is i
convenient to note that the inverse Fourier-sine transform of a unit step function h 5
is a pure sine wave - . ~ .
. ' A -
1t)y= {f&—‘-‘-‘-'-‘,g‘?—‘-dw +3 (2.4.42) . . .
3 ° v

This suggests that the Fourier transform of relaxation data must generate dynamic
data, and we have (as is verified by direct substitution): :
mEgte'= waE,,,St)- Ec]sinwtdt (2.4.43) :
" 3
E=w S.[E (B~ Jcoswtdt (2. 4.44) :
B -Ee=iw S[z m-—e.]e dt (2. 4. 45) .

= [PE.M), (2. 4. 46)

Inversion of these transforms results in

L )
B, (- = .72[.% BB sinwt dw
*

(2.4.47)
2 (= | '
Et-E,= —i-g-%—\:oswt dw (2. 4. 48) -
L J
from which it follows that E* and E' must be related. The reciprocal relations
between them are known as the Krornig-Kramers integnll(z' 7 {principal values *
indicated by cuts in integral signs):
- .~
Be-e' 2L EWB W __ o (2.4.49)
w b X <) wt-ai
- e -e‘m ' 2.4.50) ‘
= ”"f w ‘j 48 { ) :

In summary, equation (2. 4. 40) relates outputs produced by sinusdidal strain
-t input and sinusoidal stress input. Egquations {2. 4. 42) - (2. 4. 48) relate the real .
and imaginary parts of the dynamic modulus to the relaxation modulus and equations

{2.4.49) and (2. 4. 50) relate the real and imaginary parts of the dynamic modulus,
one to another. Similar relations hold for compliances.
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2.4.2 Power law distribution function.

Before examining viscoelastic test data in detail, it is appropriate to
inquire into the general character of creep and relaxation data. The first obser=
vation is that most materials behave such that if the relaxation modulus is plotted
against time on log-log paper, a nearly straight line results. Furthermore, if the
compliance data is plotted in a similar way, again a straight line arises--of approxie-
mately the same slope bhut reversed sign. Then if unit time is located at the
inflection point, creep behaves as relaxation at reciprocal time, and of course,
visa versa, Such observations lead to the selection of a trial distribution function
which, when inserted into the integral expressions (2. 4. 2) or (2. 4. 4), will integrate
out to give essentially a log-log straight line in the physical time plane.

The first function chosen is a simple power law ( = T~ )

H(T)=CcT "= cu™ (2. 4.51)

and we wish to compute its associated relaxation modulus from (2. 4. 2) allowing for
the normalization (2. 4. 3) which fixes the constant, C, i.e.

Aw
Eg-E.= &c,u""du = CcMo/n (2. 4.52)
so that® .
c=(Eg-Ean/ul (2. 4.53)

and thus, incorporating (2. 4. 9),

HaM) - n (%Y

Q
iz
S
in
3
3

(2.4.59)

= 0

we

.

* In order to normalize (2. 4. 52), it is necessary to assume an upper limit for &
say ., equivalent to a lower limit, say *_, for 7 . In practice, this lower
limit i0°s0 small that neglecting T < T has [ittie observable effect upon measured

data. This is why this approximation is frequently called the cutoff power law
distribution.
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With the constant Qetermined, we calculate the relaxation modulus in a

tensile specimen (Figure 2. 16) as

M fed
E, ) =Eg+ (E‘-E.)&n (—‘-‘3—_—) o~ t

r Mt
Set(E¢-Ed) LT%‘.‘BT)‘

which as soon as _u«

“~

(2. 4. 55)

mt® t/ 'rms 3,T(n, ,qmt)» T (n), a constant, the log-log

straight line slope desired is therefore actually obtained over most of the time

range, i.e.

’Oﬂ Em ()~ Ee
[}

o = Qo? F(+n)-n !o% (Mat)

The straight line portion usually begins after a few microseconds or so, and hence

to use this approx 'mate distribution function:
1.

3]lot the experimental relaxation modulus,

(2. 4. 56)

o(t)/ € °'versul

time on log-log paper and determine the slope of the straight
line portion of the curve, this calculation fixes n.

2. Rea1? off this curve the best values of the long and short time
moduli, E_and E . .t

3. Pick an expenmemal point, Er(tl). near the center of thc
straight line part of the curve ‘at a particular time, ¢t,. -
Knowing the two moduli (E and E ) anrd n, calculate ,u
from (2. 4. 56) at the time, gll

4.

The distribution function is now determined.

Following the discussion in connection with the Wiechert model, and

Figure 2.9, the stress during a constant strain rate test { € =Rt) may be easily
computed by integrating (2. 4. 55) with respect to time and evaluating the result at

tse €/R, i.e., d0 /de =d0 /d(Rt) 'Em“’ and

%
0 = RS E (tdt =IE.+(E;- Ee) oy

i=-n)

Ze)“ _]'?t

(2. 4.57)

where the connection with the relaxation modulus may be noted, namely

Oy (0= €[Ee + (Bt -EQ t‘_]

(2. 4.58)
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In order to calculate the creep compliance from the relaxation modulus, it
is necessary to procesd via the Laplace transforms:

= = nip ~E £ ny
E, = --';g"l" (E¢- Ec)'ﬁ("ﬁ;’) 'B;:‘E‘ﬁ, )= “55!"'(5"5974'5”%‘{3‘%7 {2. 4.59)

where, using (2.4.24), we have

\

E ™ nw
_—e _—e N
P +(El Ee)u: Sinn¥

[

crp_=.é-z [

(2. 4. 60)

In order to effect the inversion, it is necessary at this point to assume
E, < E_, this approximation, along with the previous one of assuming ,qmlp«l
limits the application of the resulting formula to the transitinn region, sufficiently

removel from the rubbery and glassy limits to make the approximations valid,
With this restriction then, it follows that

- Al Sinre
e ™ E P (2. 4. 61)
unt)”_ | sinnx (2. 4.62)
e = EmgrGan)  NX )

This leads to another simple relation, observed between creep and relaxation;
namely

Sin Ny

D‘rp‘. Ercl. = nw

" (2.4.63)

The complex modulus and compliance are easily obtained (see 2, 4. 46)

(2. 4. 64)

E®= B4 LB = B+ (Eg- B _&ei"!‘(‘u: )‘- R
.

SinnT \Mu) ' Mm

J f

- o 2N -ln}(y..)".w

= n =T e W N2, 4. 65)
E+(e ~-E nI U\} W \" € N w /Um . %
et 13 ')sinmre (.u-)

e v = ar—— —— -
v
. ow o
« e

T

e o w n y—

5 e )
s N
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It remains to connect the distributions H'(u) and L'« ). Since the exact
relations involving the cutoff functions are mathematically quite involved, one can -
grin some insight to the relation by using (2. 4. 30b) with E << E A and (2. 4. 56): -
- -
H(u) ~at ™ (1+n)
Ep™ Eg S %€ dM=Eg oy (2. 4.66) )
= T+ 1T (1-n)
Ea =By
rel. 3 AL P (2.4.67)
- Dg M= Dg Mm  sinnw
Den™ Fiiomriom pP™ . peh MW (2. 4.68) .
- -
Derp = Do~ (De-Tp)\ Lts) € (In 1) (2. 4.69)
)
B, = De (CLundu _ Dg | De-Dg .
: Dipp.= =%~ (De- D) =K 4 S (P 2.4.70
i,‘ cry. P (t ".M(P'f/‘) p P LP ( ,
X B, =2ts (p 2. 4.71) )
P .
- i
S.~-E-B,, = Desl sinax (2.4.72)
De : DeP” nW
and hence finally using (a), (b), and {(c) in the previous footnote .
o s sintnw :
L) o D84 ! == De#m ~ (2. 4.73) :
3 Dt [FmMi-m2 ~ Denm™ we
2 Comparison of (2. 4.51) and (2. 4.73) leads to a simple relation between the distrie
!,-_:: bution functijons, namely
»uy
.. , infnw sifax
& H) L' ()= %——S—Lﬁr =8 =5 (2.4.74)
;'i'-i using (2. 4. 14). ;
r;;
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It is reiterated that the preceeding relations, {2. 4.61) to (2. 4. 74) are valid ,
. ' only in the transition region. Finally it ic to be noted that, in this region, both :

distribution functions are directly proportional to the associated relaxation and
creep data, at the corresponding relaxation and retardation times. Thus the creep

curve traces out, as it were, the retardation spectrum. And similarly the relaxe
ation curve traces out the relaxation spectrum.

\

~

Turning now to relations governing the complex moduli, (see Section 2. 3. 3) ‘ K
we have : -
s'-z._r.gL 2= (M)" nF .
Eg-Ee 2 \Mm 2 2 sinn ? (2. 4.75) -
) H
The middle term of (2. 4. 75) contains the factor Bx(P' 1-p), the incomplete Beta
function, which very rapidly becomes approximated by the complete Beta function: . v
_ TPT(- x : .
B.(P, 1-P) = B(p, 1-p)= TP (‘g D) o ap (2. 4.76) .
1%
Based on the observation that plots of relaxation moduli versus time and the real '
part of dynamic modulus versus {requency are practically superimposeable, one ”
- 4
. can equate EreL' E:
. o r(|+~n)=(w Y n¥ 2.4.70) .
wat)” K/ Sinn% o -
P which gives . ; ' =
' : wt= [—Z-Sm r'(n)] (2. 4.78) S
3 Note that for n = 1, wt = 2/x N
: 1 } = 0. 637 "
- nsg, wte2/x ™
F ne0, wtze ¥ = 0.560 L
: s0 that (cf. Figure 2.17), in general, wt is well approximated by a value of 0. 6.
3 The imaginary part of dynamic mordulus is calculated to be
[ ” R
o =3y . (F T =@y E_ 2.4.79) )
F“ E“"E. L] ﬂ MI os nw —
which leads to another simple relation
e’ nw (2. 4. 80)
Tl "2 .
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2.4.3 Modified power law dietribution function.

An alternate way of guaranteeing normalization of the power=law distribution
without introducing an artificial cutoff at Tm is by multiplying in an exponential
whose argument is approximately zero in the transition region. Thus (2.4.51) is

x

arbitrarily changed to n
- - -
=cMue (2. 4.81)

Wiy=cTt"e °

where the constant of proportionality, now over the entire time range, is determined

from (2. 4.3) as mg—=e

<=Frm (2. 4.82)

leading therefore to -

- it
H(‘t)=—E-§‘.F?(—ZT:) A (2. 4.83)

This function, compared with others in Figure 2.18, has first of all some very
interesting analytical properties. The mean reciprocal relaxation time is given by

(aay = s-*‘:f 2 du =(n) (2. 4.84)

( J
at which value (('c)-l‘(;o') the maximum of the curve H{ &« ) versus 4 occurs,
Following now the same order as before, we calculate the associated relaxe
ation function as®

[ J
Nt M
- —""‘"(E‘-E')S MY e TR AV g 4 BgmEe_
o .( o) e 4 R s (2. 4. 85)

which also has the property that when t/ T o> 1o it generates a straight line in
log-~log coordinates.

As before, the tensile stress during a constant strain, € = Rt, is obtained
by integration

tens.

e e (BSR40 ) @:4.89

* A similar form can be fit to compliance data, see equation 4.1.3.
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The last item is the relation of the spectra, Hu Jto L' {u1 ). The
Laplace transform of (2. 4. 85) gives

PE, = E+(Eg-ED P " M (-1, P) . (2.4.87)

so that
s.(P = i1- pre’r-np) (2. 4.88)

A complete analytical representation of (2. 4. 88) is given by

: . wit-n
S.p=1-e"Pro-m+e'p :Zﬁ..-'}"{%‘m.—
(2. 4.89)
P S re-nyph
=1~ G-n) + 3 LU P :
1-e’p Tl-m) :\[:; T{m+1-n)

2.nd for large p, the asympt.ot’.c expansion becomes

% Timany ~-"
S (P = §.mrcn)&-P)' +o(pl )

P> o0

-%(argp(-%'_’- (2. 4.90)
M=, 2, 0000

Making use of (2. 4. 15}, it is possible to evaluate the retardation function:

8 1 m)

b

Yy =~ (2. . 91a)
1= (1-B){ 1-H S TU=n)m) YR, o G2 2l a2
Rt AT Y

or asymptotically,
B H'(mM)
Uimy= M-t 2.4.91b)
—0-) I-HG Tty -5 LM+ ]’ _atafgr 4
[n (=g i-Hpametan -3 - l"(n)M"} + (- B | Heen)

Figure 2.19 compares the retardation and relaxation functions for the particular

case whenns0.5and3 = 1073, The real and imaginary parts of the complex
dynamic modulus are obtained by letting p = iw in (2. 4. 87), namely

E-Ee _ nn $ Ca-n-w?"

—_—= w cos{w+ M-n) = 3 LUnN=w))

S os(w+ ) (1-n) _Z.'_‘ e r——— (2. 4.92a)
e n s Co-mw (="

—_— = w'sin{w+ -} (-n)~ = =

ey in(w+ I r(-n) Z o (2. 4. 92b)
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The associated asymptotic =xpansions ares

E~Ee 'Y rlensn)(-n"

TR T L Tyt (249307
= - 2 onean)=1Y ) (2. 4. 93b)
E¢—Fq¢  meo P(n)w el

Figure 2. 20 is a Nyquist diagram which shows the relation between the magnitude
and phase of the complex modulus.

Note that for low frequency (w-+o0), the phase
relation is given by

- . n
E"EQ- Tﬂﬂ—%‘ (2. 4, 94)

which is identical with (2. 4. 80) for the cutoff power law distribution.

2.4.4 The Cole distribution function.

A third distribution function which has proved useful in fitting dynamic data

is given by . .
2 sin %% sin O

W (M) = — =
v[z ¢:«:'s1‘2l +,u"+,u"‘] i f [cos'% +coshnfnul (2. 4.95)

Figure .18, the so-called Cole distribution function(z' 8 is compared with the

smoothed power law function. Note that on the log scale the Cole function is

symmetrical about the point n = 1, whereas the smoothed power law parallels

o;'xly the left-hand branch of the Cole. Furthermore, the Cole function has a
maximum at )xlpo = 1, the value of which is equal to
w

Houn| = tan 2.4.96
= =2 (2. 4.96)

whereas the smoothed function has a2 maximum at u/n o & the value of which is
equal to

) ne”
2] (’l)]mz --':-(-r—li- (2. 4. 97)

———— - =

x
»
,

- g
‘

Ty
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Note that fors H'(u)'....'? coLm H(M)], g SMOOTHED POWER LAW
= 1 L : L
rs T = ©.32 = ©.37
1 V3= 2VZ ! '
Nws 22V =048 : = 0.24
2 .- YZe I-(/2)
n=€ + €

s0 that the Cole distribution always peaks at a lower value than the smoothed power
law function.

The Cole function has the merit of casting the dynamic modulus into a rather
simple form, na..ely:

E-w’ S.zslv\!%r- ut ddnu

(2. 4.98)

X' dv. [ 1 . o

| - :
TE T vETyE ™=

Note that the operation involved in transducing the terminal equality of (2. 4. 98} is
the inverstion of a Stieltje transform (cf. (f), earlier). Figure 2.21 shows tiw
excellent straight line obtained in the rectification of dynamic data obtained fe:
glass-bead filled polyurethane binderl(z' 9’.

The associated expressions for Erel’ Otens? E", L), and Dcrp involve
quadratures which cannot be reduced to simpler analytical representations. Thus,
also the Cole distribution provides an excellent representation of dynamic compli-
ance data, although it does not lend itself to generating simple associated represen=-
*ucicus. For this reason, more attention was paid to the more tractable smoothed

power law,

2.5 Temperature«time Shift Phenomena,

Up to this point, little or nothing has been said about the effect of tempera~
ture upon viscoelastic processes represented by tensile, creep, relaxation, amd
dynamic data. In order to gain insight into the mechanism by which temperature
influences viscous processes, let us examine a typical creep data obtained on &
polyurethane binder filled with 60% ammonium perchlorate (Figure 2, 22), in

which compliance is plotted versus time on log-log coordinates for various temper-
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atures. Note that the individual curves suggest that a displacement a‘lo.n; the
absicissa in the appropriate direction will bring any two into conjunction. This is
eguivalent to stating that the curves obtained at the higher temperatures can te
brought into conjunction with the one obtained at the lowest temperature merely by
dividing their time scales by a set of f.actional numbers, one for each temperaturs.
The resulting master curve is sliown in Figure 2.23. The associated temperature
dependence of this shift factor for each curve, according to ite temperature, is
given in Iigure 2.24. .

This so-called superposition process has becn shown tc hold for :nany types
of viscoelastic data. It reveals itself, for example, in the dynamic data of

_Landel(z’ 9 used in Figure 2.2]. It was first used by Tobolsky in reducing relaxe’

ation data(z‘ 10)

+ ard since then has been used by man'y auvthors, notably T. L. Smith,
who has reduced ultimate stress and strain data from GRS rubbet(z’ ll). Work.er.
in the solid propellant field have also applied this scheme to the ultimate stress and
strain properties of various propellants and Figures 2.25, 2.26, and 2.27% show
such typical data for a polyurethane, a polybutadiene-acrylic acid, and a plastisol
binder, respectively. .

The fact that this scheme ‘vorks so well for polymeric materials suggests
that there is something rather simple in the nature of {low processes of polymer
(2.12) that the solution viscosity of
polymer molecules above a certain minimum chain length is independent of chain

mo'ecules. It was first shown by Leaderman

length and dependent only on temperature. Secondly, it was sliown %y Rouse‘z‘ 13} .

that the distribution of relaxation times governing solution viscosity is strictlya ) L
function of chain length distribution. Zimm(z' 14) then extended these statements
to bulk viscosity. It follows therefore that a given relaxation time, T i charace
teristic of any one element on a mechanical model, or of the ith fiow segment ina

polymer chain, must depend separately on temperature and on chain length,

T, = A (T (2.5.1)
where we shall arbitrarily associate the time dimension with the temperature
dependent factor.

To understand the implications of (2.5.1), consider the expression which
represents the relaxation of a discrete model in uniaxial tensica

-X
Eyg.TEet L E. e . (2.5.2a)

-
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R
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After introducing (2. 5.1), we have
-l
E.w.: B+t T E @ {2.5.2b)
and, neglecting the linear dependence of the spring or non-flow se,. :>.3 upon the
absolute temperature, it becomes immediately obvious that there will be no change
of the relaxation modulus with temperature, providing that the physical time, t. is
divided by a temperature dependent shift factor., The behavior is thus reflected
solely in a reduced time parameter, t/f(T). This example illustrates the general
principle of temperature-time equivalence. )
At this point there is some arbitrariness in a precise specification of £(T),
and there are various more or less equivalent ways to remove it, The various
curves, each at a constant temperature, may be shifted so as to coincide with any
one other curve, having its associated temperature, say Tt This is equivalent
to saying that after the curves are all superimposed, a shift bodily one way or the
other over the temperature range of interest (-60°1-‘ to +l60°F) does not aifect their
superposing into the same curve. Furthermore, one may proceed to divide the
physical time by the arbitrarily selected shift factors to obtain the reduced time
plot versus t/{(T), inticipzted from (2.5.2 ). Depending now upon how the scale of
the abscissae is fixed, one can obtain different characterizations of the reduced time
parameter which affects the convenience of data presentation.

One such converient representation stems from Tobolsky‘n(z‘ 10)

suggestion
that a good analytical representation of relaxation data may be obtained using the
fact that a plot on probability paper of

. 1og Epp.— logEe

v =t
fogEg - logEe = !°% KT

yields the straight line

!o? Eva™ ’osE. . +
———————!c%E‘ “Toq=e = ?[l— erf (%‘Q“}Tiﬁi)] (2. 5. 2)

where K(T) is taken to be that value of £{(T) at which t/{(T) equals unity. The value
of h is the reciprocal of V2 times the standard deviation and for most polymers is
of the order of 0. 4. With this provision, t/K(T) s 1 corresponds to the inflection in
the relaxation curve at which point

log EnL-1°15¢
lg=e - toq=ely,,

=.%. (2. 5.3b)
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In other words, at the inflection point the relaxation modulus assumes its geometric

mean valus

Tobolsky has furthermore shown that at this particular value the shift factor where
t/f{T) = 1, the curve of K(T) versus T has an inflection point which he specified as
the distinctive temperature T,. This particular value of Ty and K(Td);l(d is of no
immediate interest to stress analysts, but does have some meaning to rheologists
interested in polymer mechanics. As a point of fact, however, T d is usually not
more than 10°F above the glass transition temperature. Nevertheless, it develops
that the portion of the shift factor curve which does concern engineering analysis,
generally at temperatures above Ty, can be well approximated by (Figure 228 )

Qoiws =16 (T-Tu)

(2.5.5)
Kg 1004+ T~-Ty4

where T is exprese~d in degrees Fahrenheit. For example, Td = -80°F for an
unfilled polyurethane binder and Tg= 0°F for one type of polyurethane propellant,
The shift factor for most polymeric materials is Ky= 2 minutes.

A second convenient representation scheme for reducing data(z'ls’
the shift factor {(T)=a

casts

T in terms of a temperature, Ty which is arbitrarily fixed
at 50°C above the glass transition temperature. 1In this way one arrives at another
near universal temperature dependence for most polymers,

-8.86(T-T)

foq ar =0, (2.5. 6

where T is expressed in degrees Centigrade. The use of this shift factor tends to
place the glassy behavior of the relaxation modulus at unit reduced time scale
t/a.r = 1, whereas the Tobolsky scheme places unit reduced time, t/KN=1, in the
transition region.

Returning now for a moment to the relaxation data, vie may now proceed'to

identify the arbitrary constant, u o in the power law representation of the data. We
~ 1 (2. 4.85)
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where it is now evident that it can be associated with a temperature shift factor,
Mo® 1/£(T). Now near the center of the transition region where E « E g« E o
we have the approximation

B S (M) (2.5.8)
On tt2 other hand, when the argument of the error function in (2. 5.3 ) is near unity,
which implies 1/30 < K < 30, we have the approximation

!oa Eret~ Q°$E¢ ____L[‘_ 2%’ . _.:E..]
Qo% Eg ~ QoiEC Tz ﬁ- URm

and thus

- E )
Eru. =VE B¢ (F) ék‘—"% ‘ (2.5.9)

A comparison of (2.5.8) and (2. 5.9) indicates that the log~log slope similarity
requires

% E
n ="l =L 2.5.10
vy % Eq ( )
and for t—»K, the relaxation meduli will be the same if

-n
Eglu ) =YVEg Eq

or «

]
(Ee/Ee)”

Mo (T) = vTE)

(2.5.11)

which thus specifically identifies the heretofore arbitrary constant.

Note that since log (Eg/Ee) is approximately three for most unfilled poly-
meric materials, it follows from (2. 5.10) and h=0. 4 that n=20.7, whereas in

filled materials log (Eg/Be) =2, thenn= 0.5. These values have been generally

. substantiated.

,- In conclusion, it may be remarked that the existence of a temperature-time
‘ " shift correlation is important in making an engineering analysis. Under certain

F conditions to be discussed more fully in the following section, it is possible to maks=

some progress in answering the question: At what temperatures and loading times
will it be sufficiently accurate to treat the propellant material as essentially elastic,
allowing possibly for a linear variation of the spring or non-flow elastic glassy or
rubbery moduli with temperature, and when must the full viscoelastic analysis be
employed. This problem becomes particularly difficult when combined heat flow

rates and mechanical loading rates result in strain rates failing within the transition
region.
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2.6 Mechanical Property Determination

We shall discuss in this section what might be called the mirimum 'amourt -]
of information needed to calculate viscoelastic stresses and strains in complex
geometries, for which the temperature is spacewisc and timewise constant. First,
the minimum test requirements will be reviewed, and then we 3hall show how data M
obtained from these tests can be used to determine model parameters, i.e. the
constants in the operational moduli or compliances. The previous Section 2. 4 dealt
with the problem of determining operator equations whizh represent actual material
Tresponse quite accurateiy over the entire time or frequency scale through the use . ;
of distribution functions. However, we shall restrict outselves here to simple finite 7
element models which are capable of representing actual behavior over only a limited
time or frequency scale. It will be shown later :n the Engineering Anclysis, Section
3.2, that the stress analysis is often greatly simplified if it is possible to use an
approximate model with only a few elements~-usually no more than four or five.

These models will probably be sufficient for calculation of strains induced by ignition “‘
pressures; however, it is not clear at the present time that they are adequate for N
the long-time environmental slump problem. Indeed, with the inclusion of temperature
variations, the complete distribution function may be needed (or some other equi~ . ‘ .
valent method of representing the stress-strain behavior over the entire time scale, ‘

such as using convolution type integrals with relaxation moduli(z' lt""’). At this stage, .
however, convenient analysis techniques have not been developed which can be applied ) -

to this long-time thermal problem. Therefore, model fittinrg methods will be dis- '
cussed here which are directly applicable to the short-time ignition problem.

2.6.1 Minimum test requirements

The determination of mechanical properties for standard engineering metals : ]
has been reduced to more cr less of a standard procedure where reference may be
made to various publications of the American Society for Yesting Materials {ASTM).
Without attempting to infcr that these tests are always simple, common usage has . '
caused them to become well known 2nd standardized. It is custumary to determine ) ’ ;
the Young's modulus from the slope of the stress-strain curve and Poisson's ratio { >
by orthogonal strain gage measurements on a tensile specimen. Viscoelastic
materials, and rubbers in particular, are characterized by relative-softness and !
large extensions before fracture. In the first place, normal strain measuring devices
such as wire resistance gages and mechanical extensometers do not work. Secend,

the large extensi-ns also usuvally exceced the range of common indicators. For this . -




4T
rearon,cptical tricking of bench marks or crystals and the use of birefringent

caatings has frequently been employed, although data reduction and analysis is
further complicated by the necessity to accumulate time histories of the stress and
strain.

For these and other rer3ons the customary test used in deducing propellant
properties is a uniaxial tensile specimen stretched in a controlled displacement
machine which simultaneously records the applied force. The standardized specimen
is shown in Figure 2.29. From these remarks it is seen that the basic data is thus

" force and displacement. Ths former can be easily converted to stress by dividing

by initial cross sectional area, Ay for small strains or the local area, A, if the
strains are large, providing the Poisson's ratio is known. 1n the case of uniaxdal
tensile specimens, the transverse strains, ex s € 8~ ye‘. can be used to
compute the local cross sectional area as A = A°(1+ ex)z = Ao(l-ve:)z, from
which the true stress, ¥, becomes

F= P N
A=VESE ~ (~ve)f
For most propellants, it is often permissible to assume incompressibility (¢ =)
in which th2 true stress for non-infinitesimal strains becomes

- o ~_0
It fay eSS otea =0

where the definition of extension ratioA 2 1 + € has been used.

The determination of the local strain corresponding to the c‘alculatcd stress
however is another matter in the absence of direct measurement. If the elongation
measured during the test is divided by the rominal gage length of two inches (see
Figure 2.29), a poor determination of strain is deduced because it has been found
tha ‘“here is a flow of material in from the jaw area which tends to increase the gage
lex > an effective length of approximately 2.7 inches. In addition, there is tue
visceas deformations contributed by the flow near the jaws which tends to confuse
the accuracy. Some recent work incorperating square flat ended specimens bonded
to metal plates has been reported(z' 17 which may tend to eliminate much of the
effective gage length controversy, providing satisfactory bonds can be made for all
the propellants of interest.

For the time being however, unfortunate as it may be, the analyst will
gcnerally have at his disposal only force-displacement data to work with, from
which a nominal or true stress-strain curve is deduced. Of course, when more

accurate data becomes available, it should be utilized for determining the mechanical

properties. -
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One other preliminary point must be covered. It has been mentioned that the
various operator equatiors, with certain physical restrictions, may be used to
represent either bulk (dilitation) or shear (distertion) behavior. As a practical
matter, at the present state of the art, it is usually sufficient to assume the pro-
pellant to be incompressible, or at most elastic. 1In either case, whether the bulk *
modulus K+ @ or K ig finite, the dilitation behavior is non-viscoelastic by as~
sumption. Hence, only the determination of a viscoelastic operator in distortion,
A (p) (or its inverse J(p)), or in simple tension, E(p) (or its inverse D(p)} is
required, along with perhaps measuring the elastic bulk modulus. If this assumption
is zdopted, any test which yields A {p} or E(p), will suffize. In particular, if
K-> or is even large compared to the shear modulus, (2.2.9) indicates that
M (p) = E(p)/3 so that the tensile test is sufficient to deduce the desired properties.
By way of review, then, the present minimum requirements call for:

1. Measuring an e*~stic bulk medulus, or assuming
incompressibility (K = o); and

2. Measuring the uniaxial viscoelastic tensile modulus,
using the hest available stress-strain measurements
in order to determine the shear characteristics of the
propellant. .

Even though the simple relaxati‘gﬁ test is the one most commonly used, data
obtained from this test is not necessarily the easiest to use for model fitting and
stress analysis. But the data which often fits most naturally into well-established
techniques, and is most accurate with sn.all strains, is procured fro.n dynamic
tests®*: namely, measurement of displacement (or load) when a steady-state sinusoidal
load (or displacement) is applied to a specimen in simple tension or sheaz. We shall
not consider the details of this test, or others, since comprehensive presentations of
viscoelastic testing methods can be fourd in the literature, especially reference (2. 18).
However, if one does not have dynamic data available, it is possible, in principle, to
calculate the dynamic modulus or compliance from -ther tests by using the appropriate
expressions given in Section 2.4. This procedure will probably yield less accurate
results than obtained through direct dynamic measurement, but the advantages of
Eourier analysis methods which can be used with dynamic data may be sufficient to
warrant this data conversion.

# Jt will be seen later in this section that a simple graphical scheme can be used
with dynamic data to determine the parameters in a four-elernent model. Also in
Section 3, it will be shown that dynamic data can be used directly in the Fourier
inversion integral to calculate strains and stresses, wherein reither an analytical
representation of the data nor models are nezded.

T
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We shall now consider some specific methods that can be used to determine
- the spring and dashpot constants in simple models from relaxation and dynamic data.

2.6.2 Fitting simple models to relaxation data.

As we shall presently show, the response of simple models can be made to
agree cloaely with experimental data only over a very limited portion of the time
scale, so that it is necessary to first specify this time interval. This is dictated
by the loading time history (and the temperature of the body) assigned to the
particular stress analysis problem. For example, if it is desired to determine a

model for the calculation of stresses in a grain induced by ignition pressures, then -
one would assume a time, say t, beyond which failure is not expected. Model

3 parameters would then be found by curve {itting model relaxation response (or creep
response) to experimental values over the time interval, 0 €t £ t‘*.

% The material in a pressurized grain is not strained step-wises in time, but

- gererally has a strain-time history which is not only quite different from that realized

- in a relaxation test, but also it varies from point to point in the grain; hence, it is

- not obvious that a good {it of :1nodel relaxation behavior for 0 £ t £ t. implies a good

- approximation to ignition response for the same time interval. However, that it
does, follows from the fact that stress response to arbitrary straining can be written
in terms of an integral of the relaxation modulus. This representation can be

. derived very easily with transform theory. Assuming zero initial conditions, the
transformed stress-strain law is

Tp) = m(PEWP) ' (a)

which carn also be written in terms of the transformed relaxation modulus
. ,(P) =m(p)/p,

TWP)= | (P) PE(R) ()

Ty

This is inverted for arbitrary straining by using the well-known convolution theorem,
which yields

[abairhad

2 v
. = de(ty
ot)= S'm (t-p)=—=232 c
!.e b el E) dg dS ( )
- This is also known as the Duhamel representation of the viscoelastic stress-strain
- law. It is clear from {c) that knowliedge of the relaxation modulus for 0 £t ¢
completely specifies the stress-strain behavior over the same time interval.
k-
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As a simple example, let us now fit a two-element Maxwell model (Figure
2.6) over an interval 0 €t ¢ t by matching its tensile relaxation modulus to

experimental values E(t} at two intermediate times, 4 and t5. The two-paramater
system with materia® constants E m and T yields

E(t)= &= e_e"% (2.6.1)
E(t)= E,= E-Q.E' : (2.6.2)
from which it is easy to calculate that
Tu= (te-t) In-gt (2.6.3)
E.= &, exp [t, pm(%»;) /('t.-'t.)] (2. 6. 4)
30 that the tensile stress-strain relation becomes
1 [ao'(t) Ings ] dewt)
— - + E3 O'(t) (2. 6. 5‘)
, E.exp[t.h(%)/(t,-t,)] dt  ¢,-t, =74t
and the operational Young's modulus is
By s
e py= SrexeltitnlEAt-ti] P (2. 6. 5

[P + Qm%)/(t,-f.)]

If the range 0 to tf is excessive, the fit will not be good and additional elements
must be added.

This collocation procedure is straightforward, but rapidly becomes alge-

braically complicated with an increasing number of elements because of the transcen=

dental character of the simultaneous equations. Other procedures could be used,

such as minimizing the square error between model and experimental relaxation

moduli, but one still has to solve transcendental equations to determine the parameters.

Nevertheless, in order to illustrate the difference between simple model response
and experimental data, and to show the effect of adding elements, we shall compare
the relaxation moduli of three and five element models to experimental data (repre~
sented analytically by means of the distribution function for the Wiecbext model).
The material used is polyisobutylene (PIB) whose relaxation spectrum in tension can

€
o
S |

B Rl LAt

.o,




TR ST TR TR TR YT AT T el
A 3 RPN M

‘
.

[
b

¥

rew TR T - e D e /e ol et b as et e e ite SEACE e Toar e Eia ikt it
NN AN O AR N e e \ RS RIS . .t LN
e e e omwa e Ma T

>

-sx-
be represented quj.te well by a modified power law for the ghu-to-xubber

. transition regioa(z 19,‘ N

_ Eg-Ee( T\ "B AN
H(D)= —‘-——,.(m e | (2.6.6) .

where n = 0,68, and To is a known reference constant. The relaxation modulus
corresponding to this distribution function is (see equation 2, 4, 83)

. ° -n L
2 B 1) = Eot+ (Eg— E.)(H»%) (2.6.7) . N
E The relaxation modulus for the three-~element model is, from Figm:e 2.7 " )
» Erd.,(t)'—' Re+ (E‘“ Ee) e._% (2.6.8)

and for the five element, Figure 2.8, is

- Enl.s(t)= Ee + E, e-% + (Eg—E.-E.)e—t (2.6.9) .

The comparison shown in Figure 2. 30 is presented assuming that the glassy s
moduh..s, Eg. is the same for all the models, and further that E << E_. This

latter assumption allows us to neglect E, / Eg in the foregoing expresnons as long

. as we consider only the short time response. The arbitrary parameters of the -t
three and £ ~ent models (which are reduced to two and four element models -
¥ Oy neglecting Ee/E ) were chosen in order to {it the polyisobutylene modulus for
- - 0 < t/r, £10. The particular values used are
8 L0930 1 _2n 1 _o02 & (2. 6.10)
T ] . <. ’ T, . ’ .= T. ) E‘ = 0.285 L

* Polyisobutylene is uncross~linked, so that it does not have a true equilibrium ~
modulus. However, molecular entanglements provide an apparent equilibrium

modulugs which maintains a relatively constant stress for some time after the stress

has relaxed from its initial glassy value. But after a sufficient'amount of time

elapses (this time depends on the molecular weight) the stress again falis off and

approaches zero. Thus, the value E_in (2. 6.6) represents this apparent equilibrium

modulus. But we shall later neglect% when fitting models to the very short time

relazation modulus since Ee/Eg «< 1.
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Stresses in a constant’strain rate test are also compared in Figure 2, 30.
The pertinent equations, obtained from Figures 2.9, 2.7d, and 2. 84 ares

.

7 %
. .
N

SN v

)

. R\l

Wiechert: —Z - Or3) .6, ]
eche RE‘T. a-l et —e (2.6.11)

b .
o -3

- Three element: O __ - t B Eely_a t» 2.6.12

P ec e N RE‘T. +(I )(l e ( ) .

'jt. Five element: . O x

‘
)
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The comparison clearly shows that a few elements are insufficient to describe the
behavior of PIB over a broad time scale;

apply to propellants.

bk adtd
-

such a conclusion has also been found to

Now that the model parameters (2. 6. 10) are specified, we are in a position
tc make a viscoelastic stress analysis by uring the operational modulus of either
the two or four element models (we have neglected E, for short time response)

if it has been determined that it is necessary to take t£ = 10 T, » for example; then ;

four elements will probably suffice; if the stress analysis is made using only the )

Maxwell model, large errors may be introduced in the solution due to the poor fit )
shown in Figure Z.30. Or the other hand, if we take t; = 20 To then it is not clear
that even four elements are enough to obtain a reasonably accurate solution. In

view of this uncertainty regarding the error, as well as not kni:wing a priori which

portions of the relaxation curve should be weighted most heavily in fitting the models,
we will present another method which does not contain these shortcomings, "and -
R whick makes use of the more accurate dynamic data,
- 2.6,3 Fitting simple models to dynamic data.

i . Spectrzl analysis of the loading. ~ A method employing the complex frequency
BN dependent moduii or compliances has been propused by Lee(z 20

} for fitting the data,
- which we shall illustrate by applying it to the grain ignition problem. As the

response of finite-element modeBcan be made to correspond approximately to actual

behavior only over a narrow frequency band, it is first necessary to determine the

range of interest by making a Fourier analysis of the loading function. The example .
will eventually be carried through to the calculation of strains in a pressurized case~

bonded grain. At this point, however, only the characteristics of the pressure

loading need be defined; the geometry will not enter in until after model parameters :
are calculated.




~53-

A pressure pulse is transient rather than periodic so that it cannot bc
represented exactly by a series of discrete frequency components; rather it must
be given by a Fourier integral in which frequency is a continuous variable. Never-
theless, for practical purposes, it is sufficient to consider the grain to be loaded
by periodic pulses spaced far enough apart that most of the strain introduced by one
pulse relaxes out before the next one is applied, Clearly, then, the response to
each of the widely separated pulses is very nearly the same as for the transient
load. Consequently the important frequencies in a transient pulse can be determined
if we consider not only the time scaie of interest in regard to the possibility of
mechanical failure, but also the viscous properties of the propellant.

For our example, it will be assumed that pressure pi(t) increases linearly
with time from p; o 0 to P; P, att =t), and then remains constant. In addition
we will assume that from the standpoint of failure, response only uptot s 3tl'- t
need be considered. Thus, the periodic function shown in Figure 2. 31 will be used
in the analysis. Symmetrical waves are indicated since they lead to a simpler series
than obtained if the pressure is removed instantaneously. The number of terms
required to represent the function sufficiently well by a finite Fourier series will
now be found. We have chosen the ratio of root mean square error between the
series sm(t) and the exact function pi(t) to the pressure averaged over its time of
application as a criterion of accuracy. This is indicated by ol in the figure.

dm can be calculated quite readily as a functionof t /TF and m by the rela.txon( -21):

“-‘r’s [rw-s.ofet = g RHDdt —4L ar (2.6.14)

'ht!,l,

where a_are the Fourier coefficients in the cosine series

Sa(t)= Z an Cos-—t-

“-I"" ..
h
here 3, = 4RTe ! cin nrhooin 3mrtn
nt, n* Tr Te
From symmetry, (2.6.14) can be written as
) *
8 [r)-S m]at = ——S Pihdt —-é—z ay _ (2.6.15)
F Nmi,
yielaing for dm
D=z (-2 Y ¥ ke st TIE g 230XEY  (2.6,16)
om 27 \ ! 211"( tl) -..Z.,.,D Te T J

which is plotted in Figure 2. 31.
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We now choose the value of tll'l‘F such that the time between the end of one

pulse and the start of the next is twice the total length of a single pulse (4tl). - - -

Subsequently, when the solution to the strain analysis problem is obtained, a check
must be made to see if the time between pulses (Stl) is sufficient for most of the

strain to relax out, Thus, we take . -
Tastrnt =12t :

or
T 24 '
In addition, we assume that when ol % 0.05 the function is given accurately -

enough by a finite series terminating with n s m. From Figure 2,31, we take
m = 13. The lowest frequency (f) in the series isf = IITF. the highest is f = 13/Tr. ‘ .
In terms of Y

70t <€ € 2ag : (2.6.17a)
A typical value of 0. 01 seconds will be used for t, 80 that ’ -
qcps. £ § % 52 cps. {2. 6. 17-‘_’) ) "
Graphical determination of model parameters. ~ In view of the present lack - © |

of appropriate data on propellants, the analysis will be carried out using the dynamic
shear data in Figure 2. 32, which was obtained by Landel(z' 9 and is for NBS - =
polyiscbutylene (PIB) filled with 36. 7°fo (vol.) glass beads,..This idealized filled "
material exhibits the same qualitative behavior as a typica'l-com'posite propellant,
L s0 that the results should be very useful in evaluating the n";odel fitting technique -
when applied to propellants.
The complex compliance is represented in Figure 2.32 by its real and ' <
imaginary components as functions of reduced frequency. w is the frequency in terms -

of radians per second, while a®_ represents the temperature shift factor which is

T

discussed in Section 2.5%*. This factor is defired to be unity at 12, 5°C, s0 that the o
. master curves in Figure 2. 32 give the actual complex ~ompliance frequency de=
pencence when the material is at 12. 5°C. If the material is at temperatures other -
than this value, it is necessary to compute the corresponding values of a'.r in.order -

to determine the frequency dependence.

* The shift factor is now desiznated as a‘'_, rather than a_.,, since the temperatur
at which it is defined to be unity is not the lstandard referefice temperature(T _=-23"C N
.. for PIB with 36. 7% filler). This different normalization was used bYecause the J )
- original data was given at 12. 5°C. The two shift factors are proportional to each
other, with the relation being:
a, = a-(T1) -
T ac(12.5%)
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For our example, it is desirahle to thoose the temperature such that PIB
. responds to pressure with a large time effect. It was found that a temperature of .
-35°F (a'.r = 10‘) gives the desired result if Y= 0.01 seconds. (With a highly .
filled propellant, the time effect is often quite significant at temperatures on the .
order of +40°F due to the compactness of the filler). )
The frequency shift, being exponential in temperature, is much more -
important than the linear shift in the ordinate indicated in reference 2, 9; so for
simplicity we will consider only the effect of temperature on the frequency scale
given by a‘.r. This allows us to use the master curve drawn at 12.5°C directly v
for -35°F because '

Log W= Log wa’,-—l_gﬁ al, = Log wat-4 (2. 6.18) .

ThLat is, by subtracting four from the abscissa values, the actual compliance
frequency curve is obtained for use in the example. Since frequency on the master

given in (2. 6.17) in terms of W = 2=f:

1
l
curve is in terms of radians, it will be convenient to express the frequency range —
L4 % Log wk 2%

or
5.4 & Log wat¥e.s . . (2.6.19)

Now that the frequency range of interest and temperature are specif.ied. the -
model parameters can be determincd using a method described by Bland and Lee(z' 22)
It is shown in their paper that a simple graphical scheme may be used if the model
contains no more than four elements; i.e. two dashpots and two springs. Therefore
we will use the four-element model in Figure 2.13a and, as special case3, the two=

element Voigt and Maxwell models in Figure 2.11. It should be remarked that the

—
models can often be chosen independently of whether the material is cross-linked

or uncross-linked. It will be recalled that an uncroes-linked polymer strainc
indefinitely under a constant load; and that, in principle, this should be accounted L

for by a free dashpot such a2s in Figure 2. 11b. However, when the frequ acy band
does not include w = 0 such behavior does not appear. In addition, if t’ iterial
is enclosed in a case under constant internal pressure, unlimite .« ~ prohibited

due to the presence of a bulk modulus which causes the strain to approach a definite

limiting value.
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The complex compliance of the four-element modei is obtained from
Figure 2. 13a; however shear behavior is to be represented by the model so we let
k -« J and write the real and imaginary components as

J’(w_)==.7 et “‘““w;’%,ul (2. 6. 20).
on =t 4 WEI . . (2. 6.21)
Jwy =55+ Y .

In order to make a strain analysis of a case-bonded grain, it is usually necessary to
know two different moduli or compliances. Thus, in addition to the complex shear
compliance, the bulk modulus K will be used. A reasonable assumption is that bulk
response is elastic so that K is constant. A typical value for K is 2 x 106 psi or
13.8 x xo"’ dyneclcmz. With this in mind, it will be convenient to consider the
nondimensional compliance KJ* Defining

dlwy=KJ(W) , S (wr=KJITw)

(2. 6.22)
Be=KJg , B=KJ , By —"—,;5-
the compliances (2.6. 20} and (2. 6.21) become
G By
dwy= B‘+—u;,.—r-r:-‘- (2. 6.23)
wy= -2z, 2 Wh 2.6.24
PN T (@.6.24
¢' ard 4" can be combined to yield
w (W)= = F + —_____!.B"“?;“'B (2.6.25)
4 ]

which is the equation of a straight line if W &"( W ) is plotted against ¢*(W ). The
slope is ~1/7; and the intercept on the w $"(W ) axis is(B, +B, + Bg)/'q . Hence
by plotting the experimental data of Figure 2. 32 using w ¢" and ¢* as coordinate-,
the model parameiers 7, and B, *B, * Bg are determined by a best straight line fit
in the previously estimated frequency band. This is done in Figure 2,33, and the
parameters are found graphically to be

B,+ B+ Bg= -66

T,=0.925%10°F sec.

Now that;, is known, it can be used to plot experimental values of ¢' against

(m"t‘.‘ + 1).1 . It is seen from equation (2. 6. 23) that the four element model is
again represented by a straight line, but now with slope B8, and with®_ as the ¢'
intercept. Carrying out this, we find from Figure 2. 34 that Bl = £0, a‘ 6.5,
and B, = 9.5.

\E‘

i Bl
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The parameters in the two-element models of Figure 2.11 will now be

determined. Interms of shear behavior, the complex compliance for the Voigt
model is given by '

. Jv
J (W) = G (2. 6.26)
Tvd
Jwy= "d‘:T'c?T:'l— (2.6.27)
Defining
$wr=KJWwr Pw=KkIMWw, Bv=KIy (2.6.28)
the nondimensional compliances for the Voigt model are
Y BV
« 3 6.
q, (W = WwT, By (2 30)

These are the same as ¢' and ¢ for the four-element model if we set B,sB = 0,
B, =B and T, = 7,. Thus, the straight line equation (2. 6. 25) reduces to

w ¢ (W)=~ % $'(w) + .?::

" (2.6.31)
B, and T, are given immedliately from Figure 2.33 as

8,=66 » T,= 0.925xI0 " sec.

Figure 2.11 provides us with the complex compliance of the Maxwell model

(W)= By (2.£.32)
1
W = o8 (2.6.33)

where

¢,(w)= KJI((.U) y W)= KJ"((D) 3 Bu=KJm, ..'B_ = % (2. 6. 34)
B, and B are determined numerically such that ¢' and ¢* take on the experimental

values approximately half-way between the frequency limits, indicated in
Figure 2.33.as

1 -3 .
B,= 30 , B= 5555 = 0.312%x {0 " Sec.

————
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The four ele:nent model can be reduced immadiately to the three element
model in Figure 2. 12a by setting y = 00, and by definition this requires thatB, = 0
in equations (2. 6.23) and (2. 6.24). It is observed that with three elements

B+B=6G6
and further, from (2. 6.23) and (2. 6. 24) that when ( W'T2 + 1) = 1,

B, 4+ Bg= 66 = ¢’ .
Reference to Figure ¢.34 shows that a straight line passing through ¢* = 26 at
( w'eh + 1) = 1 fits the experimental curve best if the ¢' intercept is zero. This
requires Bg = 0, thereby reducing the model to the Voigt. Thus, four elements
must be used to obtain a better fit than offered by two which justifics omission of
the three-element model in the strain analysis problem,

The nondimensional compliances ¢' and ¢" are plotted in Figure 2. 35 for
all three models and compared with the experimental data. In addition, the
compliances for the four-ele: ;ent model are shown in Figure 2.32 in order to
clearly illustrate how the model response compares with the entire experimental

master curves. It is interesting to note that both ¢! and ¢" for four elements are

reasonabiy close to the actual response. However, with the Maxwell model, ¢'

is in considerable errcr, while ¢'" is somewhat better. Conversely, with the Voigt

mode), ¢' ic satisfactory while ¢! deviates considerably from the experimental
values.

In Section 3.2, all three models will be used to carry out a strain analysis
of a case-bonded grain in order to compare their respective responses.
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3. ENGINEERING ANALYSIS

. The first two of the following sections are devoted to the problein of
calculating viscoelastic stresscs and strains in complex geometries when the
i material behavior is known through the representations discussed in previous
sections. As a matter of background information, viscoelastic stress theory is
reviewed for the case of mechanically induced stresses and strains in bodies at a

uniform, constant temperature. In particular, it is shown how elastic solutions can

be used directly in the viscoelastic analysis. This method of using an "associated"

elastic solution is then iilustrated with some cxamples of the estimation of visco-
elastic strains in long, hollow, circular cylinders subjected to internal pressur~
ization. Several different property characterizations are used to compare their

advantages or disadvantages in obtaining solutions. Following these examples, we "

show how viscoelastic soluticns for cylinders with circular ports may be extended
to irclude the more common star configurations,

A collection of useful elastic solutions are then given which can be extended

>

“to viscoelasticity by use of the association analogy, and the final section contains
a discussion of several additional grain design problems of current interest.

v ik v LAV RV
T,

3.1

Review of Viscoelastic Theory

SNk

The equations governing the mechanical behavior of viscoelastic bodies in
whic!; the strains are smzll are the three equilibrium equations (1.2.1); six strain
displacement relations ('l: 2.2);' and six stress-strain equations that are similar to )
the well-known ones of elastic theory (1. 2. 3), but with differential operators in
place of the usual elastic constants. Thus, it is seen that the only difference between
the governing system of equations of linear elasticity and linear viscoelasticity lies
in the stress-strain relations.

The form of these relations was discussed in Section 2 for the simple cases
of tensile, shear, and bulk deformation of isotropic bodies. In zddition, it was
pointed out that only two of these transfer functions relating the stress and strain
are independent. The way in which these two enter in the general three-dimer-ional
stress-strain equations is purely a co:is'e;;uence of geometric symmetry of isotropic
bodies: therefore the stress-strain equations of elasticity and viscoelasticity are
identical in form, but with any two of the viscoelastic operators E(p), K(p)» or M (p)

in place of the elastic constants E, K, oru . The viccoelastic Poisson's ratio is

defined by a ratio of the more basic operators through equation (2.2.10), and

generally will have to be replaced by these operators when solving a particular
protlem. )

R 2 W
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We turn now to a discuseion of a convenient met*>d of solving the governing

equations of viscoelasticity for a wide class of problems of practical interest,

;which was suggested by Lee(s‘ l). The equations are all operated on with the
Laplace transform so that all dependent vaiiables become functions of the transform
parameter, p, rather than time. Assuming zero initial conditions, and denoting
transformed variables with a bar, it can be shown that we obtain the transformed
equations by simply placing a bar over all variables in equations (1. 2.1) and (1.2.2),
and interpreting the time derivatives in the transfer functions E(p), K(p)» A(p)

as the transform parameter p. For example, the 2quilibrium equation in the

x-direction becomes Wu Ty PP . 3
©
= T3y vt t& T (3.1.1)

Similarly, the transformed stress-strain equation for € x (1.2.3) .s written

_ EPE =Tu- (1 (T,+ T, ) (3.1.2)
The transformed equations (1.2.1) and (1.2.2), along with transformed boundary
conditions, represent a complete set for determining the transformed dependent
variables stress, strain, and displacement. Once these variables are found as
functions of spacial coordinates and p, the Laplace inversion integral (or transform
tables) is used to obtain the time dependent solutions.

It i3 evident that the transformed equations of viscoelasticity have the same
spacial character as the elastic equations; thus, if time and space dependence appear
as separate facto;l in the boundary conditions and body forces, then the transformed
solutions to a viscoelastic problem will possess the same spacial dependence as an
"associated” elastic problem. That is, when body forces cante written as
X = X'(x) X"(t) (with similar representations for the y and z directions), stress
boundary conditions as Fx = F“(x) Fx“(t) (in which F, is the x-component of surface
force per unit area), and displacement boundary conditions as u(x) = u'(x}) u'(t), then
the transformed viscoelastic stresses and dieplacements have the same spacewise
dependence as those in a geometrically identical elastic body with these body forces
and boundary conditions. This correspondence has great practical importance sirce
viscoelastic solutions can be obtained immediately from the associated elastic
solutions by:

1. placing bars over dependent variables in the elastic solutiong

2. veplacing the boundary and body force terms by the corresponding
transformed quantities;

3. replacing the elastic constants by the corresponding transformed
operators; and

4. inverting the resulting expressions by means of transform tables
or the inversion integral to obtain the time dependent solution.
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As a final point, it is generally sufficiently accurate to assume that the : “l
bulk modulus, instead of being an operator,is a constant, i.e. an elastic response,

LA AL, .

or in the special case of an assumed incompressible material, K~»m. For this
reason, the final inversion step can often be considerably simplified if the trans~ )
formed solution is expressed in terms of the (constant) bulk modulus K and one *
transfer function 4(p) or E(p), or their reciprocals J(p) or D(p). s

A simple example. - In order to clarify the procedure of solving a visco- ’

Y
'll

L

e

’

elastic stress problem, we will first consider the simple example of a long, uncased,
thick~walled cylinder under internal pressure. The tangential stress in the associated -
elastic cylinder is given in Section 3,3,2 as -

a8 P('t)
0= T=ar (‘

 +

T

(3.1.3) )

Since there are no material ccnstants in (3.1. 3), it follows that the stress ina

viscoelastic cylinder is the same. However, this is not true for the radial dis= -
placement ) o

_ @R+, B ]
= o-E [(l 2V)r+ —

A SRACEC

£

¥

]
P

(3.1.4)

For simplicity, let us assume that the material deforms much more easily in shear .
than in bulk so that 2/ & { and the elastic displacement brcomes

. s @B mm ' ]
E L‘=—2— r(b‘s_a‘;) = (3- 1.5) )

L which ‘mmediately gives us the transformed viscoelastic displacement as

2 r(~3") (4 "
For the first representation, let E(p) = 'CVEV [p + l/‘zv] corresponding to the -
- Voigt model, (Figure 2,5) . With a step pressure of amplitude po(Pi =0, t< 0; -
:. P; =Py t> 0) the transformed pressure is Fi = polp and therefore o
1 ' R

- ey (3.1.7)
2 vr(t=a» p(p+ /¢ )'r Ev

RSP AR i Sl ek 1
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This expression is readily inverted by the tables to give the viscoelastic dise :
placement - :
3 Ib 1’. ‘t. - -
wwr =3 Foeman & (- e (3-1.8) 5
Note that as t —»c0, u approaches the displacement in an elastic cylinder with ] =

Young's modulus E_ and Poisson's ratio v= }.

Had we used a four or five element model for the modulus operator, it
would have been necessary to solve a quadradic equation to invert the transform.
Additional elements would likewise increase the order of the zquation which has to
be solved to invert i. However, if the elastic constant is replaced by the com~ o
plance operator D(p), this would not be the case since the transformed strain then
becomes

LS

3 g = ' ' . :
up) = Y ) 19165} ?..(1’) (3.1.9) - -
- With 'ﬁi = p°/ P» the displacement is just proportional to the tensile creep compliance ,..

D(". . : . b

¢ JR g . . [

a'®
ut)= % Too—ay B D(1) (3. 1.10)

It is irmportant to observe, in this connectiorn, that it is not necessary to specify a
model, but only the experimental values of creep compliance, as determined in the 2|
simplest test {rom a tensile specimen. . -® -

The responses (3.1.8) or (3.1. 10) can now be used to calculate the dis- - }
placement for a general pressure-time curve by means of the Duhamel integral.
If we denote the response of any linear system to a unit step pressure by R (t), ’

then the response R(t) of the system to a general pressure p{t), assumed to vanilh

for t <0, is given by( -2 + ", . ; :
R(t) = S R, (- £) SPLA) “"s("’ . (3.1.11) b
- Thus, the radial displacement of the cylinder in terms of the general creep com-
- pliance is simply
e at T . N
__3 b d?(!) '
F__ uny=-3 mgn(t D37 98 (3.1.12) : ]

-
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To summarize, we can state that this problem has illustrated examples
of the generai rules:

1. An elastic and viscoelastic stress(displacement) are
identical if the clastic variable is independent of material
constants.

2. When the elastic solution is a function of only one material
constant which enters as a simple factor, the transformed
solution can be readily inverted if the viscoelastic operator
replacing the constant is chosen such that it appears in the
numerator of the transformed expression.

3. The response of a linear system to a step input can be used
to calculate the behavior under arbitrary time-dependent
loading.

3.2 Application to Grain Ignition'.

We will now proceed to discuss, in detail, the calculation of viscoelastic
tangential strain at the inner surface of a long, case-bonded grain. The model
parameters determined in Section 2.6 will be used in this analysis, and it will be
assumed that the bulk modulus is a constant. In addition, erosion of the inner
surface will be neglected so that validity of the viscoelastic solution will be limited
to times which are short relative to the total burning time.

The associated elastic strain in a long, case-bonded grain, given in
Section 3. 3.2 can be written as

_ A= -2y 22X __-_p__]
€= 1(\-,« + o\ p.) v (3.2.1)

where A s b/a, p' = pressure between cyiinder and case, and the pressure ratio
P'/p; is
¥ 2G-v%)

v T e T 0- 29 R 1 (R0 22) :‘:‘ (3.2.2)

Since the viscoclastic properties were given in Sectipn 2.6 in terms of shear com-
pliance (J = 1/ u ) and bulk modulus (K), equations (3.2.1) and (3. 2. 2) will be
rewritten in terms of these properties by using the relations (2.2.9) and (2. 2. 10),
which yields

C.
. ¢ z 2 g
€, = %_;m[—wzz)\ (\-%)CH“P)] (3.2.3)°
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where, for convenience, we have defined

$=KJ (3. 2. 4a) .
c= ‘;:‘ (3. 2. 4v)

_ .
¢ ['*‘iﬁ-'—vn‘c‘lf%q’[‘*““'“"u-v,)sc]*% 5.2.40)

1+3A R PI] z 2055 Nfoo \
P*+2¢[1+ ryto 7y - e+ SR -adxe

Typical values for the various parameters are K= 2 x 106 psi, E = 30 x 106 psi,
V.= 0.3, b/h » 200, \ = 2 from which C = 13.3. It is observed that the terms
containing (C) in the square brackets in H(¢) are quite small compared to unity if

the above numbers are used. In fact, if they are neglected, H(¢) reduces to
-
$+-x $+1.33
D= T2 Gaod G- - @+ 72.80 (3.2.5)

W=

Actually, if inthe numerator 4/3 is neglected compared to ¢, K will disappear
explicitly from (3. 2. 3) and the incompressible limit case will result, Further
analysis, however, will show that for short times, when ¢ may be small, the 4/3

term should be retained. If all terms are retained in H{¢), we find in the numarical
example that ’

SN (4 +1.33) ($+0.320) |, $+1.38 =
A . = l.of 0 3.2.6

) = 04 76.82)($+ 0.316) $¢+76.82 ( ' .
F s0 that both the numerator and denominator again become first order in ¢. This

;.:{: has particular significance in reducing the complexity of the viscoelastic problem

7-; in which ¢ is a transfer function. Using the expression for H(é) from (3. 2. 6), the -
‘_-::' strain is

» . ¢ ¢+ 133 } -6

: Eq= 0.75 +———] =4+ 10| {———2 P %I ’ .

? o s(aq>+|)[ { °'{¢+7e.az ]Pb 1) (3.2.7)

2 Since ¢ is proportional to the grain's compliance, its limiting values are

P given by the material's long time (or zero frequency) value and the short time

(or infinite frequency) value. From the data for polyisobutylene in Figure 2.32,

e the largest possible value for ¢ is $(wm 0) s KI(ww0) = 1.38 x 10‘. and the

@_« smallest $(w = ©) = KJ{ w = ) = 4. 36. Because the minimum value of ¢ is 4. 36,
- the term -1 will be neglected in (3.2.7), and also we will let $/(3¢+1) & 1/3. With
3 these reasonable approximations, the strain is

,

$+1.3% -6
€,= 25[m]gxlo (3.2.8)

T ", y e S e




‘1“..

AT AR e S
M '

L)

I

v

ol i

e

" mﬁ"'." o

v

o
LA ‘
.

,l .
. !‘L,

L T M T L TR MM, VW & W g T Y LT LTSI W Y RI &Y TV YT UTTT TR L TW U
T AT SR YT I® LTTAYY LR Y VOUN T, NN AT VT TR \,‘\" al .,-r' T SR NT T R TS AR - . v - . .

«105~

Without carrying out a viscoelastic z nalysis, the minimum and maximum
values of € o AR be found for a pressure step P; applied at t = 0 and held constant
indefinitely. The initial atrain is given by substituting ¢ = 4. 36 into (3. 2. 8), vie,

e%(t =0)=1.75 P; X 10’6; and the long timz strain is given by using ¢ = 1. 38
x 107 in (3.2.8), viz, € (t= @) =25p; x 107", Although it is tempting to compare
these values to the ultimate uniaxial strains, it is important to recognize that these
limiting values of strain do not, in general, provide sufficient information to predict
whether or not the grain will fail upon ignition; the failure criterion may not only
depend upon the strain biaxiality, but also upon the entire strain history and hence the
precise way in which € varies with time., (See Section 4)

To illustrate the various procedures, examples will be presented showing the
determination of time dependent responses for step and ramp type pressure inputs
typical of an ignition loading for a propellant grain. First, discrete-element models
will be employed, followed by an exact solution in order to examine the accuracy of
the models and to investigate the practicability of by-passing models entirely by
using the Fourier inversion integral technique.

3.2.1 Two and four element{bulk elastic}-step and ramp pressure.

The strain will be found first for a unit pressure step and then this solution
will be used to find the response for a typical ramp type pulse. With viscoelasticity,

we look upon ¢ as being a transfer function of the parameter p. For convenience,
we will write (3.2.8) as

E,(p)= 25 %10 " (P (3.2.9)

and define E(p) as the transformed, normalized strain due to a unit pressure step
‘i(t) applied at t = 0 (si(t) =0, t <0; -.(t) =1, t>0y;

¢(PY+1.33 Y ¢(p)+| 33

£(t) will be found first using a four-element model. Recall that by definition
¢(p) = KJ{p)s and that J(p) is given by-t-h—e- operational compliance k(p) in Figure 2.13a.
Using the same definitions given in Section 2.6. 3, Bg = KJ’g, B1 = KJI' Bz = K"cllq,
we have

B B

$p)= B+ —— Zpr Tz

(3.2.11)




o TR TIe e A e A T8 A e gme e e g e e W 6T R M W gt AT LIR WL 4T 3 TN Ve R,
i N L LR N I AP I A SRS T AT AT ™ ﬂ‘,ﬂ-».‘.-_-—m,

~106-
Substitution of (3. 2. 11) into (3. 2. 10) yields

8
(Bg+1.33) P*+(B,+ 8,+Bg-+l.33)'%+"fr" 1

Ty = .
135 2) ® +76.ez)p’+(a.+a,+ Bg +76. az)—% +% P (3.2.12)
1]
After substxtutmg the model parameters B, = 50, B, 9.5, 8_= 6.5, ° .
tl = 0.925 x 10°2 gec. into (3. 2. 12) and then factoring the denominator, T (p) '
becomes
- oo P+ 0.3ud P+ Lazxio’
= O. q
12 (p+7.50Xp+1778) P (3.2.13)
This can be easily inverted to obtain the time dependent normalized strain
~75¢t ~177.5¢
k)= {~0.54¢ — o.3Te (3.2.14)
i‘_t-.: which is plotted in Figure 3.1 for three different time scales. The behavior of §
s for short times, O <t <0.01, is governed by the second exponential in (3. 2. 14);
FQ., while the relatively long time behavior, t > 0.03, is determined by the first
E-, ) exponential. It is interesting to see that the time interval in which both exponentials
g act is in the time scale of the pressure pulse.
\ The time dependence resulting when the two-element models are used is
-, found in 4 similar fashion. From Figure 2. 11, the operational shear compliance
for the Voigt model is .
¢' ) = < Jv - B :
P =T T T $(3.2.19) j
- {
and for the Maxwell model is
$(p)= K J... ]= Ba (3.2.16)
Substituting these expressions into the normalized strain £(t), equation (3. 2. 10}, '
L we find for the Voigt model B4 139
] _ P+ 38T, |
E(p)= 0.0¢7 B+ 76Dz | P R (3.2.17)
- P+ —ceT, ,
e R :
: - and for the Maxwell model .
20 . [am-n.aa ?"‘W
. p) = ~76.82 (3.2.18)
3 Bn a(a,,.-t-"ls 82) .
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Inversion of (3.2, 17) yields for the Voigt model
~20tt
t(t)=o0.47— 0458 (3. 2.19)
in which we have used the previously determined parameter values of B v = 66, and
T, = 0.925 x 10"% seconds. Similarly, from (3.2. 18) we find the response for
the Maxwell model

tw=1-one>* (3.2.20)

in which we have setp =30 andp=0.312x 103 seconds.

The response curves shown in Figure 3.1 for both two-element models
clearly indicate that a four-element model is needed to obtain sufficient accuracy
for times of the order of the pressure rise time, 0.01 seconds. However, it is
seen that the four-element response deviates strongly from the exact solution after
0.1 seconds; estimation of strains at times beyond this value will probably require
the use of a model with additional elements.

Strain response to the unit pressure step can be used to calculate the
response Y (t) to an arbitrary pressure loading pi(t) by using the Duhamel integral

t -
\p(t)--g be-w 3R 4, (3.2.21)
A du
in which the pressure is assvined to vanish fort € 0. The strain follows from
equation (3. 2. 9)

€,= 25 =107 Y1) (3.2.22)

We will now specialize (3. 2. 21) to the ramp type pulse illustrated in
Figure 3.2 with a derivative defined mathematically as

—_—t=0 t<o
3.2.23
L Y o<t<t, ¢ !
t
o 1,<t<,

SE=- 1T<T< Y+,

—_—t =0 tetet
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Using the pressure derivative given by (3. 2.23), ¥ (t) becomes

t .
\p(t)x—g- § G du occt< t, '
t‘ ® v
X ]
‘V(ﬂ = _'tz"' §(\Odu t, <t <t (3.2.24)
-t
x 2ty
Y= _?:.[ g uydu ~ S (u)du] T,<t< ety
< o .
. Tta
Pt =—2=- S Fudu- S ;m.m] teta<t
)

Y -Gt

The response for the three different models, obtained by substituting {3.2. 14),
(3.2.19) and (3. 2. 20) into (3. 2. 24) is shown in Figure 3. 2.

It will be recalled that in the spectral analysis we assumed that most of the
strain due to one entire pulse would relax out by the time t = th1 = 9.12 seconds.
It is seen from the four-element curve that this assumption is valid since only
about 10%0 of the maximum value remains att = 12¢,.

It is important to recogrize that the model parameters used in the foregoing '
analysis are functions of both temperature and time scale cf the pressure pulse. ;
More precisely, the parameters depend on where the frequency band of interest lies :
on the master curve of dynamic data. In order to make a complete design study for

i
various temperatures and pressure rise times, it is necessary to first determine ;

the model parameters as a function of position of this band. Then for each specified ‘

preosure rise time and temperature, the appropriate frequency band must be found.

However, with each model the grain and case geometry can be varied independently

of the model parameters. This assumes, of cou se, that the strain occuring with

the various geometries relaxes out sufficiently rapid in order that the spectral
analysis is valid.

3.2.2 Direct incorporation of complex compliance data usmg Fourier tranlforp-
$tep and ramp pressure.

The transfer function é(p) in (3. 2. 10) generally has to be represented by an
infinite element model in order to fit experimental data over the entire time scale.
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If the retardation spectrum L{T ) were known, then

- -~
: . $(p)= kJ(v)-K[J,«'— Sﬁt)‘-ﬁﬂ (3.2.25) o
LP+E]T .
could be substituted into equation (3. 2. 10) and used to invert ¥(p). This procedure .
will usually require contour integration in the complex plane which can be quite
laborious. However, application of the Fourier transform and inversion integral
enables the strain to be found without using model theory or complex integration,
wherein only the assumption of linear viscoelasticity is required,
Therefore, as an alternate method of analysis, an exact solution to the
viscoelastic problem will be obtained by using experimental values for dynamic data
directly in the Fourier inversion integral. In view of the data existing orly ir

graphical form, it i3 necessary to usec numerical integration. It turns out that it is

much easier to perform the numerical inversion if the pressure is a step function
rather than a pulse associated with a particular time scale. Thus, as before, we
- will first determine the strain for a pressure step applied at t s 0, and then extend

the results to the ramp pressure by using (3.2.24). The Fourier transform of a

p function £(t) is defined as
B -«

. Tw= S {(t)e-w‘dt (3.2.26)

R with the inversion integral ]
- LSRRl
- Wy .
[i ety = S Ty 2" do (3.2.27)
2% ) o

Formally operating on linear differential equations with the transform is equivalent,
with zero initial conditions, to replacing the time derivative by it and the pressure
2 si(t) by 's'i(w); therefore we obtain the Fourier transformed strain from (3. 2. 10)
by simply replacing pby iw ,

e

T(w) = AW S; (w) (3.2.28)
where the complex admittance A(w) is defined as

$(iw) +)-33 e -
- —— 3.2.29
Alwy = ¥ 7602 { ) —

However, ¢(iw )} is actually the nondimensional complex compliance, ¢*(w), defined
previously in Section 2.6.3

$liwy = $%w) = KINW) = (W) - 1w

. . P = kI (W ; (W)= KJ"(w) -
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Substituting ¢fiw ) = ¢*(w)-i¢"(wW ) into A(W) and rearranging to form the real and
imaginary components, we find

Alw) = A(w) — { Alw) (3. 2.30)
wh
e @+ (¢T+78.15¢ + 1028

= @+ (7 + 153.6 9"+ 5900

75.5¢"
@Y+ (¢ +153.6¢"+ 5900
It will be convenient to write A(w) in an alternative form

Aw)=

Alw)= 1A (0)) & (3.2.31)

AW = WIA’.'(wH A3 (w)

e(w) = tan' AW
Alw)

Both (3. 2.30) and (3.2. 31) are plotted in Figure 3.3 by using values for ¢' and ¢"
taken directly from the master curves of the real and imaginary components of
complex compliance, Figure 2.32.

We have defined 's'i( w) as the transform of a unit step function which vanishes
for t € 0 and equals unity for t > 0. However, the transform cannot be found
directly since the transform of the step from (3. 2. 26) is

® et |
o

which does not converge to a definite limit.

Consequently, we must consider a
modified step function

Syity=o0 ; t<o

- (3.2.32)
Syti=e H t»o
ard let ¥+ 0 after the final form of the inversion integral is determined. 1Itis
shown in the following that ¥ can be taken identically as zero in the portion of the
inversion integral requiring numeral integration, while the portion in which we
canrot initially take it as zero can be evaluated analytically.
3.2.32) is

The transform of

— ® tiyaiv)
s,(w) =\€e

Triw (3.2.33)

o o g o e
AT N

LR AR
3

P e




o

Cx el

TR

i Jyiiaaialall 1AL

- e 2l T Eara s s o-a ANl Lo siiat il L Srun SAan s thear NG RS
- (v iascats aites ba=dtiadis Sk dnicier ink il int i AR s

N . R T T T )

. -111-
From (3. 2. 27) and (3. 2. 33), the normalized strain due to a unit pressure step is
written formally as

Sty =5 < Lim S Aw Sy e g
- .

(3. 2. 34)
U (CAw) _twt
=L W) W
2w ,L':S Yriw o
-
In order to numerically integrate (3. 2. 34), it must first be written as a
real integral. It is convenient to use form (3. 2. 31) for A(w) so that

{t-€)

Awe L 1a1e = 1Al [cos(wt-€) + i sin(wt~€)) (3. 2. 35)

Substituting (3. 2. 35) into (3. 2. 34) and writing
1 Y-
Y+iw ~  rewe

E(t)"— Lin S e ,[Y— Lw][Cos(uft-e)-i-Lsm (wt e)]dw (3. 2. 36}

€ has been definud 28
-t Az (W)

tan
€= A

in which Az and Al are known onlyfor w » 0. However, behavior of € for negative

W can be determined from model theory.

Reference to the most general models

given in Figure 2. 15 show that the real component of complex compliance is even

inw , and the imaginary component is odd in w .

Thus, from (3. 2. 30) it is clear

that | Al is an even function while € is odd. Using .his fact, we can write (3. 2. 36)

as two real integrals with limits from 0 to w:

Y =— Lim S 1Al W Sin(WE-€) 4,

Y+
(3.2.37)
Alces(wt-€) ,
""’i“;‘l’"; TS-—‘-—W—F‘dW = 1‘+ I,

The {first integral, defined as Il, converges uniformly for all ¥ and hence we can
set Y = 0 under the integral sign. It is seen that if we set ¥ = 0 in the second

integral I,, it diverges due to the 1/ w 2 term in the integrand and the lower limit
being zero. However, a change of variable will allow the limit to be taken. Letting

w-» YN in 12' we obtain
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-—Ll Agrn)l _ 2
2™ ,,’:‘ "+ °F [rat-e(xad]dn (3.2.38)

Since Iz is uniformly convergent in ¥, we may set ¥ = 0 under the integral sign,
thus:

!A( )
]_z:__.\A(o)]& 40 ;‘ . (3.2.39)

in which we have used the fact that (o) = 0. Therefcre £(t) in (3. 2. 37) is given by

L J
(. 1A
)=~ &——-w sin(wt-€)dw + >

(¢

(3. 2. 40)

£(t) can now be found by numerical integration. The method employed for the

problem in this reporc was to use Simpson’s rule for aporoximately the first two
cycles of sin ( wt-€ ), and then construct analytical approximations for the
remaining range of integration in which the contribution to £(t) was relativaly small,

The result is plotted on log-log paper in Figure 3.4, and for three different time

scales in Figure 3.1 indicated as the "exact" response. The strain can be approxi-

mated by a few straight lines or log-log paper 30 that it has a power law form as
shewn in Figure 3. 4.

A very useful approximate relation exists between the real part of the
~émittance A, ard the strain §(t). Examination shows that £ (0.5/w ) & Al(w)
Thus, by taking values of A(w) from Figure 3.3 and plotting these values against

t=0.5/w , a good approximation to the exact normalized strain is obtained as -

shown in Figure 3.4. It is expected that thus "rule' will hold as long as the complex

adraittance has the form shown in Figure 3.3; however, other examples should be
examined in order to determine the generality of the rule.

The solution £{t) was obtained for a particular geometry in which certain

dimensions were assumed. If it is decired to study the responscs as a function of

dimensional changes, in principle, the complete Fourier inversion must be carried
out with each set of dimensions. However, if the rule (ot /¢ } = Al(“” is found

to hold for one set of dimensions, the strain can be computed direstly from this

when other sets are used. In the problem just solved ol = 3.5; however, it may be

somewhat different for various materials and may change significantly if radical
changes in dimensions are made. - In a design study involving dimensional changxc,
limiting values should be used to check the value for o .
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The analytical approximations to £(t), given in Figure 3.4, were substituted
directly into equations (3. 2. 24) in order to calculate the normalized strain response
for the pressure pulse shown in Figure 3.2. The elastic limit cases for the strain
are shown as well as the actual viscoelastic response. The limit cases correspord
to the hypothetical situvations in which the grain responds with glassy complinnce
{the smallest possible compliance which is thz limiting value at high frequency) and
the rubbery or equilibrium compliance (the largest possible compliance which is the
limiting value at low frequencies). It is clearly seen that the actual strain history
is considerably different from what an elastic limit analysis would indicate.

It is important to recognize that it was not necessary to specify any pressure
time scale or temperature in obtaining the fundamental solution £(t). This was
necessary with the finite-element model analysis and consequently the solutions were
valid only for a specified time scale and temperature. Since the solution just
obtained is known for all time (the very shor* time portion is not shown in Figure 3.4,
however, it can be found from the inversion integral), it can be used to drawa
master response curve which is valid as long as the material's temperature is
constant in time. That is, the time-temperature superposition principle discussed
in the Section 2.5 can be applied by plotting £ as a function of (tla,r). It should be
recalled that a small approximation is made in doing this since the linear dependence
of compliance on temperature has been neglected. If this dependency is considered,
then the admittanc. plotted against reduced frequency (w a.r) will change slightly
with temperature. However, the present inaccuracy of propellant data does not
warrant such a correction.

The master curve for E,(t/a.r) can be used to make a param=tric siudy of
response as a function of temperature and pressure rise time for each set of
dimensions assigned to the grain-case geometry. 1In view of the empirical relation
found between the real part of the admittance Al and §, which becomes
g(tla,r) = (o /w a,r) s A w a.r) in terms of reduced variables, the response §(t/a.r)
can be found quite readily as a function dimensions if further examination verifies
the relation for other examples. Such a set of master curves would allow a complete
design study to be made. This conclusion can be contrasted with that made for the
solution with finite-element models. It will be recalled that with these simple mocels
each solution could be easily used in a parametric study in which dimensions were
changed, and a set of these solutions were needed to study the effect of temperature

and pressure pulse variations. Also, if it is desired to take erosion of the inner

ll.p‘l. L.
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boundary into account, the Fourier integral method cannot be used; however, one
can use a method such as suggested by Lee and Radok(a' 3 in which finite eleraent
models are employed. Consequently, we cannot state, in general, that one method
is better than the other since the most appropriate one will be deter.nined by the
particular problem at hand.

3.2.3 Extension of the solutions to pressurized cylinders with internal star-
shaped perforations.

Inasmuch as the stress and displacement solutions presented in this report
apply only to circularly perforated cylinders, it is useful to extend these solutions
to include the more common star configurations (Figure 3.5). An approximate °
method based upon elastic concentration factors will be discussed for both elastic
and viscoelastic grains. Ina paper by Ordahl and Williaml(s' 4’, this method is
applied to elastic grains (with and without cases) and several design curves are
presented’that give preliminary values of stress concentration factors®.

The concentration factor K has been defined 33(3' 4

gr=-Os

A Or=0% -

where Oy, 0, = radial ard tangential (hoop) principal stresses,
respectively, in a star perforated grain,

K= (3.2.41)

0Oy, 0, = radial and tangential principal stresses re-
spectively, in a grain with a circular port.

The stresses O’x_ and Og» for either plane stress or the condition of constant
strain €, are given in Section 3.3.2 as )
b,
- (2P

P-¥;
Op= Q"?’Y&;)t_‘ + %z_ \

(3.2.42)

. . e
0,._____(_5‘5 P ?-.+ L (a)'P

&= @&

* The data was preliminary in the sense that only a limited amount of experimental
values was used and that subsequent checks indicate about 20%o unconservative
results. It is understood that other workers are presently engzged in refining the
earlier data.
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Also ’
0, 2 (2] F= P

& (3.2.43)

external pressure (for a case-bonded grain this is
the pressure between the case and grain)

a = inside radius of circular grain, and

b = outside radius of circular grainm.

It is seen that ( o, - O'.) depends only on the pressure difference (p'-p‘);
80 that in order for K to be independent of loading, ( 0': - 0':) must also be

proportional to (p* -pi). This will now be shown. Since linear behavior is assumed,
0': and 0’: are generally written as

Or=0./P,+ 08,9

O': = BP+ §4?'
in which Bp By By and P4 are geometrical factors pertaining to a particular
configuration and, in general, are space dependent. It should be noted that these

factors are independent of material properties since the stresses in (3. 2. 44) 2pply

to a two dimensional problem with all stress bourdary conditiorns. The stress
difference is '

-3
[
"
]
el
"
[ ]

internal pressure

v-
¥

(3. 2. 44)

0:“ 0: = (ﬁ.‘ p))?-"" (pa. p‘)?, 3.2. 45)

A relationship between the pi, which must hold for all pressures, can be found by
considering the limit case of P; = p' = p. When P = p' = p, a cylinder of any
arbitrary cross-section is in a state of uniform hydrostatic pressure so that

0’: = 0’: = -p, and therefore from (3.2. 45) the B; must satisfy
(B-82) = — (82— B (3.2. 46)

Substitution of (3. 2. 46) into (3. 2. 45) yields

G:‘ 0: = (pz' po‘:(?" P‘) (3.2.47)

which was to be shown.

o—
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The raximum stresses and strains occur at the star points, indicated in
Figure 3.5, and for this reason the necessary relations will be presented for
calculating stress=s and strains at this location only. It is clear that because of
symmetry there is no shear stress acting along radial lines drawn through the star
points which means the stresses at the star points, denoted as o’;P and O':’.
are principlc stresses.

At the star point (r s a} » K2K, (this corresponds to the notation of

reference 3.4 and 0,;1: = - p;- Using thu notation, U.P is found from (3. 2. 41)
and (3.2.43) evaluated at r s a:

oy =¥ {(bggr}(v P)- .P (3.2.48)

It is apparent from this result that only when P = 0 can K, be interpreted as the
ratio of U:P to 0'.. It should be emphasized that the above results are independent

YT
T e
v s e
. .
B . .

of material propertiesipi and p' are known; thus, both viscoelastic and eiastic
® stresses can be found using (3. 2. 48) with the values of K, given in reference 3.4.
=
- However, with a case-bonded grain, p' (assumed uniform) is the pressure between

case and grain so that it is related to p; through geometrical factors and material

properties. This necessitates the use of an approximation in which shear stresses

at r =b are neglected, and p' is assumed to be the same for both the star and

circular configurations if the radius (a) of the circular port is made equal to the . -

G

radius drawn to the star point. It is evident that this approximation improves as the
web fraction b-a/b increases.
Elastic solutions for p' are given in Section 3. 3, 2 for several pressure *
problems. With a viscoelastic grain it is necessary to solve a differential equation
that arises when elastic constants in the equation for p' are replaced by appropriate
differential operators. It may be noted that, in general, P; and p' have the same
time dependence only if the grain is elastic.

T Y T
. b S .

% - * .

t . 3 .

The radial, tangential, and axial strains at the star points, denoted as
e:p ’ e:". and e:p respectively, are found by substituting .U;pn “P; and

(3. 2. 48) into the stress-strain equations

r

.F’T' ek

et =-Lf-r-vlo; "+ 05"

e¥= _'E_[ o-v(-R+0;N] (3. 2.49)
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Two important cases can be distinguished: First, for plane stress ( O, = 0)

R L= L) :

oy (3. 2. 50) L
Z&) }(? P)] -

er=-g-anem {23 - w)

)
For plane strain ( €, = 0): %

r=- [(' |-¢P+—K%(_§(?$}(P -»] aen o

=12 Lot [ (-Ep)R+ K i;(;‘z' }(P P)]

An interesting limit case results for incompressible materials { ¥ :-}), The first

€v= -é— G-2Pp+ K i

term appearing in the brackets in (3.2.51) will then vanish leaving for plane strain -

el = < e.(a) .
(3.2.52) e

sp
.6 = K €(Q)

Viscoelastic star point strain» are obtained from the applicable set of "o
preceding equations in the usual manner by first replacing E and 3 by viscoelastic o

operators and then inverting to obtain the time dependence. s

3.3 A Collection of Useful Formulas,

3.3.1 Range of validity of linear elastic analysis

At the end of Section 2.5, certain conditions were alluded to, under which the

propellant could be treated as essentially elastic. The answer to this question was
deferred until this section in order to provide directly an application of the visco-
elastic theory discussed under Sections 2.4, 2.5, and 2,6. This was done in
Sections 3.1 and 3.2, where an ignition type of problem was discussed. This problem
is peculiar in the sense that in the first few microseconds after rapidly applied load-
ing at ambient temperature, the propellant changes its mechanical response from -

glassy to rubbery. In other applicaticns of load at room temp=rature, we are not

—— & T d = v P TP T

)
H

P T T U T Sy
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concerned with response in the first few microseconds, but rather with longtime

behavior, such as slump. Or equivalently, if the load is applied at extremely low
temperatures, we are only concerned with short-time behavior. In both these cases,
the propellant behaves essentially elastic--rubbery at ambient, or glassy at low
temperatures. Thus, it is possible in a large number of cases to assume linear
elastic behavior, and thereby use the following collection of elastic solutions directly
in an engineering analysis.

Before presenting these formulas, it is important to establish ranges of
validity. Thus, at low temperatures it is necessary to know the limit of duration
beyond which creep effects enter the picture. Conversely, at ambient temperatures,
it is necessary to know the minimum duration within which relaxation effects are
still important.

In order to investigate this point, we must first choose a tolerance limit
within which the reduced modulus is to be considered elastic. Thus, for the case
of short times, if the tolerance limit is denoted by 33. and we consider the tensile
modulus, for example, then

Era, - Eq
Eg ~ Ee

>1-§& {3.3.1)
This criterion guarantees that the propellant acts perfectly elastic, glassy and
brittle during the time scale of the experiment at a given temperature. In order to

evaluate this time scale, we use the modified power law distribution, Section 2. 4.3,
and set

-N _ t
1-§g < [w-.-}aﬂ = 1-ntee . (3.3.2)
30 that
toe < K('r)_%\.‘. (3.3.3)
Tty

Similarly, for long times, with the tolerance limit again denoted by &..
we have
Evel. -y
B —m, < le (3. 3.4)

This criterion guarantees that the propellant acts perfectly elastic and rubbery
within the time scale of the experiment at a given temperature. In order to evél\au
thix time scale, we set

£> IH T};;TT“:: l.:_(;)_]" , so tat (3.3.5)

b,
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. t::,.,w > KM {3.3.6)
By way of comparison, we have the following tabulationfor n=4, § =10-3

TABLE 3.1
Material T K, in K0P ‘t.‘."-ﬂ. , mn K”(:'s&) Tooe.y ™0 [t , Tl
ateria o, F | KowiniKCoRmal s | e S “:6.&0"
unfilled polyure- -80 2 2 4’.0'3 2"0. 2'4.'060 4.5"-0‘ 2Ag16‘
thane binder
one kind of poly- o 2 | 738" sx1S8'| 73018 | 14 x16°] 28%16" | 1axi6*
lurethane prapella L

. It is apparent that, in the case of a propellant with 2 high brittle or distinctive

temperature, relaxation efiects are negligible at -80°F, while relaxation is i
completed with 9 sec. at ¢80°1-‘. On the' other hand, in the case of an unfilled rubber
or a propellant with a brittle temperature down around -80°F, relaxation effects

are very important down at -80°F, and have completely relaxed out at +80°r.

One can now interpret this extent of relaxation in terms of the mechanical
model. For convenience, we use a Wiechert model c}':aracterized by a modified
power law distribution and ask what the corresponding relaxation times are, below
which all dashpots have already relaxed, and above which no dashpots have had time

to relax at a given time and temperature. Thus, for the latter case, we set
LT SR (115,) S" S
n = wet
[*&=]" T ), T

This is equivalent to statement that, at time t and temperature K(T), all dashpots

dx ~ 3.3.7)

whese relaxation times are less than T min have already relaxed out, in the course

of which the modulus has only been reduced by the tolerance factor (1- § ). We

replace (t + K)/T by V to ob:ain 4R
- & [K"\')]“ t--ﬂ.e~vvh-|
" T A (3.3.8)
[+ vem)
which yields
T+
5= y[IER, ] _[_____. Tmin (3.3.9)
~(m Tain>> Torctr) n
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so that
44+ K(T)
= [nG- s)l* (3.3.10) .
or <+ k(T ++K(T)
e Crors s S A T

Similarly, in order to determine the relaxation time below which all dashpots
have already relaxed at given time and temperature, we set

S . 30) S"""'g""’-‘s‘m-

I T S o (3.3.12)

This is equivalent to the statement that, at time and temperature K(T), all dashpots
whose rclaxation times are greater than Tmax have not yet relaxed out, leaving a

tolerance factor § of the original modulus. We again replace (t + K}/ by v to
obtain

6 e (" _e'v™
[H_‘L.l": n) ) ” [t+xm]™ v {3.3.13)

X

R e W e N (3.3.14)

-n
!"(r\) Tnane & KAV [————‘* *tK(T)l so that
WA,

? (3.3.15)

B

Zoae, = [t+kM] /5.8

Equations (3.3.11) and (3. 3. 16) show very clearly the cut-off relaxation times
follow the time scale of the experiment; the magnification factors 4 and 1/5.5 . ’ ‘

respectively depend only on the tolerance factor § , and the log-log slope.

5.8 , or .
(3.3.16) :

3.3.2 Stress-strain fields in cylinders.

The following pages summarize first the important equations in cylindrical
coordinates which define the stress~strain field in both infinite and finite cylinders
under various types of loadings. The general cylindrical equations are listed,
followed by those restricted to axi>' symmetry for both three and two-dimensional
problems. Following this, simple .,adings su.h as simple tension, internal
pressurization and torsion are applied to free and elastically cased hollow tubes.
Some relations for solid cylinders are also included. Finally, thermoelastic
equations and simple thermal stress fields ars prelent_ed.
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- 1JST OF S5TRESS-STRAIN FIELDS IN CYLINDERS i
- Formulas Page S
! Definitions of Symbols and Terms 23 SN
Cylindrical Egquations - i 125 . —-—
i Axially Symmetric Equations i 126 - v
Axially Symmetric Equations - Two Dimensional i 127 '

Pressure Loadi_l_g!:

Pressure-Solid Cylinder<No Case~Two Dimensional P-1 128 -

Plane Stress and Two Dimensional Plane Strain "
Pressure-Solid Cylinder-with Case-Two Dimensional P-2,3 129
Plane Stress
Pressure-Solid Cylinder-with Case~-Two Dimensional P-4,5 131
Plane Strain . . .
Pressure-Hollow Cylinder-External Pressure-No Case- P-6 133 -~
Two Dimensional Planz Stress and Two Dimensional oy
Plane Strain A g
Pressure-Hollow Cylinder-Internal Pressure-No Casee P-7 134
Two Dimensional Plane Stress and Two Dim.ensional o
Plane Strain . . r:‘._
Pressure-Hollow Cylinder-External Pressure-with Case- P-8,9 135
. Two Dimensional Plane Stress 7
Pressure-Hollow Cylinder-External Pressure-with Case- P-10,1l 137 ) -
Two Dimensional Plare Strain Lo
. Pressure~Hollow Cylinder~Internal Pressure-with Case~ P-12,13 139 .
Two Dimernsional Plane Stress .
Pressure-Hollow Cylinder-Internal Pressure-with Case- P-14,15 141 N
Two Dimensional Plane Strain s
Pressure-Hollow Cylinder-Internal Pressure-with Case- P-16,17,18 143 -
Ends Bonded
- Tensile Loading:
g Tension-Solid or Hollow Cylinder-No Case T-1 146
- Tension-Solid or Hollow Cylinder-with Case-Bonded~ T-2,3 147 —
. Cylinder and Case in Tension-Uniform Stress -
3 Tension-5Solid or Hollow Cylinder-with Case-Bonded~ T-4,5 149 s
Cylinder and Case in Tension-Uniform Strain )
Tension-Solid or Hollow Cylinder-with Case-Borded~ T-6 151

Case in Tengion or Cylinder in Tension

T
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Torsile l.oadinl:

Torsion eq'ations-St. Venant
Torsion Equations-Second Order
Tossion-Solid or Hollow Cylinder~No Cas

Torsion-Solid or Hollow Cylinder-with Case-Cylinder
and Case under Torsion

Torsion-Solid or Hollow Cylinder-with Case-Case under
Torsion-Cylinder Unbonded

Torsion-Solid or Hollow Cylinder-with Case~Case under
Torsion-Cylirder Bonded to Case

Torsion-Solid oz Hollow Cylinder-with Case-Cylinder
under Torsion-Unbonded .

Gravity Loa s

Gravity-Solid or Hollow Cylinder-with Case-Pure Shear

Thermal Londin!:

Thermoelastic Xquations

Temperature=Saiid or Hollow Cylinder-No Case~Plane
Stress

Tempcrature -Sclid or Hollow Cylinder-No Case-Plane
Strain

Temperature-Solid or Hollow Cylinder-with Case-Plane
Stress

Temperature-Solid or Hollow Cylinder-with Case-Plane
Strain

Temperature-Uniform-Hollow Cylinder-with Case and
Ends Bonded

Temp:rature-Steady Flow-Plane Stress-No Case
Temparature-Steady Flow-Plane Strain-No Case

Formulas

t-1
t-2
t-3
t-4

t-5
t-6

t=7

AT-1
AT-2

aAT-3

AT-4,5
aT=6,7
AT-8,9

aAT-10
aAT-11

. Palc

152
153
15¢
158

156
157

158

159

160
161

162
163
165
167

169
170




P AT i R T G & W W R I N T e TR TN T AT R S g e TN ey Ty T T T T TN R YR T T e T T
L e I T T T M T B ™ -

E‘\"“ TSRS TR TV

-~

~

-123-

DEFINITIONS OF SYMBOLS AND TERMS

a - inside radius of cylindrical propelﬁ.zt grain
b - outside radius of cylindrical propellant graia '
’ - c - outside radius of case, as subscript for case properties ....
= E - Young's modulus
\ e - relative volume change: AV/V e € .+ €, + €,

2 g - acceleration due to gravity 32.17 fpe
. 1Y - case thickness << b :

] in - ratural logarithm, base e 2.71 -

E P - pressure, psi. :

P r - radial coordinate

o R « body force in radial direction, as for example,

3 centrifugal force )

1 T - temperature change from refe=>~ - or initial temperature N

3 u - radial displacement ) "
v - tangential displacement "
w « axial displacement
z = axial coordinate
z - body force in axial direction, e.g., gravity )

- ot - coefficient of thermal expansion "'
¥ - shear strain L'
A v - del operator for differentiation )

€¢ - case to propellant modulus ratis = thEcI [(bz-az) E]
€ - normal straina .
L) - tangential coordinate of the cylindrical system i
[ - body force in tangential direction 7
Tt - shear modulus of elasticity = E/ [2(1 + %)) .

4 b\ - Lame constant = yE/ [(1 +9)(1 - 29))

' y - Poisson's ratio .
E;.. p - specific density = lbalin’ -
" o - normal stress o
3 T - shear stress c.

: ¢ - stress function hd
. : -

Caadt A M e 2
o5

PR

i
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Bonded = adhesion of propellant to case .-
End effects - effects due to finite length cylinders: x s 0 or s =} A
* Necking effect - shrinking of cross-section due to elongation N
Plane stress - no stress in axial direction: o =0 .
Plane strain - no etsxin (displacement) in axial direction: e, =0 —
Second order - & smaller quantity which iz proportional to square
of the variable
~ - most elastic solutions are first order linear theory ;
3 Small strains - strains of the order of a few percent for linear theory
- St. Venart ~ {a) localized effects at boundaries die out as .
ﬁ boundaries are remote -
- - - (b) simple first order torsion in which ends -
. rotate as solid disks
- Steady flow - temperature distribution constant with time
e Subscript (: ) ~ used to indicate two solutions simultaneously -
. upper sign option with upper subscript, « c. -
Ht] ~
L
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CYL INDRICAL. EQUATIONS
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Q4+vY) > ‘ N
X € = = fere Y
: = SF2 e vies Shep 2] ‘

1 5
U= - {1+9) o
1 =3 STIE

w o= ‘-—-[o—zwv‘dw
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AiAaLLyY SYMHETRIC EQUATIONS - TWO DIMEMSIOMAL, $

EQuLBanKee:

> & Gy~ o
S5¥ T —F YR-=O

STRAMN — DISPLACEMENT

PLAaME STORESS:

¥

T‘mf,., vy
' -"'

,

i
’

L s A
)

; }r‘-".

v
[

™

]

. X it
RN

o

N u
Cr= 37"’ =5 0 &= 3

Gpy= 0 €,~0

PLANE STRAINS

&r= w(0-V6) €,= T}E-[o',- Vst 6,)] ,(%1" )[s,-(.‘}‘-';,-) 6,]

€o = (Go-V &) Co=g[6~vi6+ c.)]-(%’-’:)[s,-(.‘i_'_;) 8|

Gy ""'—;‘(Ur"’ 6)

Hence., To chamge plane strems irto pPans s3Train, substitute:

= v
= for B and ey

STRESS FuUNCTOMAL ApPROACH ( MO BODY FORCES):

vté =0 .
2 3 (B 3
ViRt Tor
6?*"?%*%*2¢
¢
So= JA=-fitzc

d=Alnr+Cr*
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PRESSURE - SOL.ID CYLIWDER ~ MO CASE,

.

TWO_Dsusioual,  PLAMVEE STRESS: ]

F BOWUDARY COMDITIONS: .
‘:‘::' : "-' -‘p. : r-b -
- i r

N Gg=0: z=0, 1

1

~ ) STURGGES .

3

i —y — -
‘;. ‘ ‘l’- c'. - - ?. ol T

:‘ i : — R
L. STRANMS 4 DISPLACEMENTS: i

= 1= — "
Z N e,. e. - = ,. - ;‘

. ' Q= . . .
.~ ‘ L = -ﬂ——-——-—nr .

Cg= -%‘—’f. : ’ T

w-—’,‘.ﬁv.:

TWoO I BINID | ] 3

Soundary conditions g stresses® same eawcept 6,;= 0%
T 2m0, ! and Gw-2vp :

- - STRAG & DISPLACEMENTS:

"

e Qe V(- 29)
.. el‘ - E. - --——.—-———‘“

U= — O+ V)(1~29) P
=

ASSI P TION ¢
? . L Ne andad eaffects
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PRESSURE — SOL.ID CYLMDER - WITId CASEE -

U= Uey T=0: =)

0>=0 ¢ z=o, L -

. .
3
- .
. . . . . -
2 «

i

H \ H
b~
3 . -
288
o
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STRESSES M €OLID CYLWDER:
: LY »

~2c'p, L
= (1o ¥+ (= W) B° ¢ (1= ¥)(c"- b‘;—;%‘

0= 0, =-¥

P = pressure between cylinder and case

Fom Tweal Casm:

. . * ’ : ]
P

140-v) 0 & .

pE

- STRANMS § DEPLACEHMESTES il SOLID CYLmJDER:
erae.g-jl:‘ll" o

STRESES % CasSk

’ ' bt (Pe- P) 1 PP~ ne
: O = oo g B

A y ge (R=$) R o B
! G="To T YT oy

* EoRMULAGS P-2
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®
STRANSS DISDLACEMHEISTS p CASE ) ‘ -
=P +9 N . :-
€= (‘-b’)n‘ [b‘c (- ")(I v %) o, (v l?-p.c.'xs-g)] -
(P 14 %) )
e (c‘- o=, [ ve (Pr.” +(#E- ReX-20)]
2 % (P’ = Pc) g
g = |
(¥ ) ™ '
= (c‘ib")'i: [. vt (‘P.;?)(wv.) +(1:'b‘-<p. Xi- *01‘] ) E
wa — 2% (FP-pch o ;
(c*-p")B, '

ARBIMMDTIONS
1. Mo end effecte .

2. Mo shear tranemitted beatween cylinder a~d cass.
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PRESSURE - SOLID CYL WDER - WITH CASE (COMT) .
Tw IMEEL) L._PLALIE sSToawnt: ;-3.
BOUNDAITY TOMDITIONS ’ £ -
o’r m - ?. HER . X
(TR 7 PR r=p )
G,=0: =0, 1 .
/ ?
STORSASES A SOLD CvLIDER:
. - —2(1=-1)c P,
C = - =
e S+ (1= 2960 + (I~ 2 ¥)(crbY) (e V) B -
((C27AY 4 .
‘P's presaa batween cylindar and case
FOo@ Twinl Casn: .
P L . .
P+ (1=2¥V)(i+V) hEe .
-9 -3
STRAS § DISPLACEMENTS N CYlLhJDER: o
= = J=2NO+N) o -
€, =€, - ®
Um— (=2¥)(»+v) .p'r '
- .
STRESSES caéa: -
B (P~ ) ! vb—nc
KT S A N
" o me PEO-P) ) FE-RS
. < —b* r c- .
o = -22% (P'¥ - ™) '
cr-pt
FORMULAS P-4
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, sSTRQANS @ DISpLACEMENTS A CABSE:S .
§
g -
o It [ vet (7D e
T R B, e + (b~ ?.c')(!-z‘il)]
Gy = 1+ [ e’ (P~ F) ne .
(C‘—b‘)!‘ - T +(p b~ ?.C x"‘ 27.)]
i
v+ 9k vt (-t
e - (- pei-2907)
ASBSLUMPTION I
. No and effacte. - 2
j
-
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S S
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Wﬁw—‘“‘ R -.1; .o -.1, W TR AN TR TR T
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Q,'O: =3
Qn-P‘: rab

G=0: z=o, !

STRESSES!?
Oem- L8 (1= X))

Gp= ;;—2‘—(!4- r‘)

BSTRANES & DISDLACEMMENSTS:

€, =— (b a‘)s [("‘V)"'(H'V) ]
= (=-nr+ (e
€y = “"'_"'“I(' DY+ 2 ]i (b‘-a‘)s[ + (1+v ]

(b*-a)
€r = 2B, _2vPn
- U= -ae T

TWO DOIAERISOMNAL. PlLAMLEE aTORARS:

Boundary conditions # ctresses eame axcapt €;=0: T=0, L

el 6.8 —2_%.._..
b‘

STRAKS & DISHLACEMENITES:

€= _ERUYY) -
-me [e-2n- ) oo

u=~— B P1r9) ar

e 2T+ F]

- ERO+tr a*
S (b*-aye= [(' 2+ 1"']
ASSOUMPTION 3

. Mo end effacte
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PRESSUE= - HOLL.OW DR =

IWO D-eISIonAl, O AR STOESST .

BOUIDARY COMNDITIOMS:

G==P;: T=a .
t
0= O: zmo, L
SToRSSES:
| ap, .
: &= (- )
a'p a
%= ()
STRAMS ¢ DISPLACKMEISTS:
€y '(;.!‘-_2‘.7);[(!- V)~ (i1+ n%]
a9, B
L " } us (E_';:‘)';[(l-v)n G+ ] )
S P anE - (e E !
& " T-a ? g”-%" _ )
.:\:: - ____“' 1 ._:‘?;‘ ’:4_‘.’ T -
Two ormusiausr sreass:
Boundary conditionas g stresscs same except €,~0: t-ql,
and = atp
G =29 B
STRANS ¢ DISPLACEMENTS:
atp U9y, s
€= Tome -2~ 5] oo .
- arpi () & U= "(ET.F)'E' l-zu)f...%]
S= Gome [0-20+ )
ASSUMPTION : )
. Mo end effets
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PRESSURE «1IOL L OW DER—

=81 (= 3 e
BOULIDAITY CONDITIONS:
O,=0: Tr=a
U U, T=0: Tmb
Gp==-P: rec

Gp=0: z=o,l

STRESSeS IJ LOLL.OW CWYiWIDER:

£

O, =

P’- 2 C. P,

{:—:’_f,;—:i [(|+ Na+ (- b‘] + [(w V) €4 (1= 3) b‘]

- W
O, o (1= %-

|OR TN CAGS:

”, P,
I+ ltema*+ -y '__L"_.
[ +Na'+(Q )b] Yy

STRANS & DISPLACEMENTS 1y CYIlWIDEDR:

€, -"7‘,7-2;)';[(! V) - (l+v)—]

. 0,. ‘)e [('-V)r+ O+ v)
€, -—-——L-[(l-s'}-l- Gi+ v)%

2VE' ¥ L)
€ == - - v 2vb o
t 4 (bl_al)z 4 U—: ————(b‘- ‘) '
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sTREseams 8J caom: o
BSm-o) 1 . _vi-nc

"= e vt oow R
_BS =P 1 . oP-pc® )

o= SR L4 SRS |

! "

S - — AT P [] - S A

= TeTEas [+ WESR 9 + (- - ) 3
ﬂ-SG,Jr-fﬁ. g

€ EEe (WS (e B - NP - R 5

i

€ = — 20 (P - P ' d
(c*-*)me i R

e i :'

W= - ev.ggb-ﬂ.c‘zt . ; -
‘c-pme : -
ASSLMDTIONS: - .
I. Ne and effacts . ,
2. Mo shear between cylindar and c:... . ' . = -
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e a . o ——— o ——— - Wy

PRESSURE -LIOLL.OW CYLWIODER-EUTEIAIAL. PRESSURE-WITIL CA‘SE:L@'QI -~
* Twi oL - .z -
BOAIDARY COMDITIOMS! ‘f_
.-;: ° Ce=0: Tma
i
; . UumU: r=b
g G=—"f: T=C
’ 6,=0: 1ImoO, 1 —-
X :
! s
: sSroaessEs ku LHOLLOW CYiLWJOER:
. b." a* -
Q:—b‘_t(l-—'-:-‘ ’ -
P"- 20\~ Vc)¢.9-
- =X NE [, a 1, e s
e Ia +( ZV)b]+[c +(E z‘J.)b]
¥ = pressure between Cylinder ad case.
) Fo@ Ty Casm: -
p= ®
- 1+ [a+(m2npt] U h Be
- arX1-12)bm
R a* s
G= - P~ a (".'_r") -
d.s -— M "
b*-at
BTOAIUS & DISPLACEMEISTS $J CvLWIDET2:
!!*V)b'p' a* -
T p-ahm {("2”- T“]) .
1+Y) .
2P lg-znr+ 2
S ‘ u= Faym I(l r 1“]
=-—_$L*'____. |_2v -+ W
S & -ahe [( ) %'] .
EommuLas P-IQ
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BTRAESSES W TAGRET

B (=90 1, _¥b"-Pc"
¢= ct -t =t c‘-U‘.

=be B | _ PPt
G ct=b* r ct-*

q= 2% Py’ - p.c")
Ctw p*

STRANS & DISPILACRMENTS A CAGIE °

Ve )
er’ (C‘:' b‘)‘c {b‘c‘(p.. P )-:,T' + ('_ 2 *X‘P‘b.'- ,.c.)]

+ ALK Y . ”»8
e.a-é;;%,;; [-Fe- o2t (-2n)p-ne)

w ‘—"“(;-t:-n. et +0-20xp 8 - e

ArBDTION

L o end effacts.
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BoOLWDAIZY COMNDITIONS:

G==—P: r=2

U= u,, T=oO: r=b
G=0: r=c

0;3 O0: =2zmo, l‘

GTRESGES M LOLLOW CYIWIDER

R (P-P) | | pa-PP
&= p*-a* r + Poa

6 =- atbi(p-p) 1 2" - P

' -2 v-at

. 2 a*p;
1+ 9)at + (- NP+ (- aE NPT
[oes ) e, et e |

FOR TN CcacEs:

p= 2a’p;
[ema+-np]

+ (b*—-a')bm
h By

STRANS ¢ DISPLACEMEITS M CYLMIDED:

—_ ! YL PP S - S 4’|
&= oo [a+ HAE =PI + (- VXA )

}u=5€,dr= TE,
_____‘_____ " Sea’ D _’_ - T 2,

€= GrmE L (N FFF - PIR +(-VXRA 47
E._:_zugﬁa'-v’b‘) , W zv(p.,a'—p'b')!

T T - ah=

b=-ane
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- - - N . - . . .
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oy o Zamts e .
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STI2RMYEES ) CASME

B’ .
Rl (- =

'y .
6= (5

STROHNS & DTPDLACEMEISTS ) CASR:

e’ »
€ = o (0~ - 0e )

'—‘—Lb- i - . .
"~ U o [T+ (]
Go= T -+ (e )

- 2UEY
(-bm,

2409 -
W= (c.__ b‘)-& z

ASSLIETIONNS
. o end effects.
2 o shear betwsean cylinder and case.
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PRESSURE-HCOLLOW CYLADER-MTERMAL. PRESSURE-~WITI] CASE-(COMT)

LS am 2y COMDITIONS

0’,"“9&3 Tal Y )

[T R Y P r=p
Cem QO ¢ r=c

G"’): !UO. l

STRESSES MW HOLLOW CYrLhIDER:

a,= 2P ('~ ‘D,')_%‘ + pa-pd
- ar »-2"

G- REWTRY 1 pat- N
L4 Pea® rs - =*

2v(p.3" ~ P'bY)
-

-, 2 (l” ‘V) “’L

4+ =-29)B ]+ b'-I'XH"V._)_E_ 2 »
[a*+ (-29)5) S———-(c‘_s—-—-——xwg)&[c-b(u-zt’.)b]

G

P = pressure batweern cylindar and caea.

WO “Thiihd CASBE:
20-)a P,

{3+ (1~29)p]) 4+ L= yhb8
O+ )h e

STRAIIS & DEPLACEMEIATS I CYILLIWDER:

=Y a0yt _ -
RaRTr [a PP~ P+ (1- 2P b‘)l
u-Se,clr = Yy
&= GramE - TP+ (2R A= PEY))
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STRROSHS W CAms °

= . - o

o= 22 (+5)

=LA S -

STRAMS & D 8 Cames S

'.‘ Q0D .
S €, x .(ET:__)._.[(‘-zg.)- ._ic
u-%;:__. Li:'[o.z*),-*_q

e~ (e DY » } “
=T Gl s i "
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PRESSUIE ~ Lo LOVv CYLINDER— INTERMAL. PRESSURE - WITHd CASE

MLM

BOLMDARY COMDITIOMS;

Cp==P;: T=2
=0 : r=cC
Uu=ile ¢ T=b
Ww==we : X=0, [}

SrRosses K HOLLOW CYLWDERQ
(PROPELLANMT) S

(ot EECR=P) 0 PR b
(¢ I p*-a* r *-a*

Po= PRESSURE BETWEENMN CASE @
PROPELLSUT

6,=-¥,

P'=PrRESSURRE BETWERN BUOS &
DOOPELLANT

r .
e
A =
=9

|

—

P v
TTIT ittt

i tiy
:1}1?1)9.1 ¥

,’
.
BEREREEN
o: "",0

21~ 1*)EL +{2-- v+ (1-29)}&

5

1+ i){(:—zv)-ab-:ﬂ} g+ {[3-v(1+4t)}g;+(:+v)}e‘ +20-)5

. evienE-Diet +{[—-(|+3v)+2%(2+v)]§;.:—(n+v)}s¢-2(;-1::).};;
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WHIERE

2bh Ec

Ce= m (naa case)
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: STRAMS ¢ DISPLACEMENTS W PROPELLAMTS o
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&y m = P4 2v(BETEY]
=1 ab'p=-m) |
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| :
H \ .
W= g‘[‘b'-{» 2v (B3 p.b)]
STRESSES ) Cades: i
. bP >
o’(:)._ h (;;%) (s casm)
_ (P-ar'+ a'p |
% G =1v= 2bn - ’
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TENSIOM —~ SOL_lD o HOL L OW CY IMNDER A IO CASE,
L H
5 : *
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, BoubAan Yy COMDITIONS
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1
’ 2 il . °
= Gm R = wwy ¢ =0, L
.. H for solid c,l?n‘ar
N 6, =0 : Tma, b let a«» ©
~ . 3}
>.’~ . i
o STRAKS 4 % -
- ; r
T . \
e" = e. P - ig& §
reuat . = N
. : N
g 6. N
- _\ ‘. = —E‘L . s
. N
) N .
DISPILACEMENTS §
. N v
® ' )
'k-’"'
3 U= - ——VE‘. r . L)
.' ‘.
W= = ) 4 .
ﬁ ASSUMPTIONS - =
X,
o 1. No end effects — githar ands contract as givan
R
:‘ - by U or we consider only ragors > 0(b-a) from
s erds (St. Venant ), -
2 6, distributed unifarmly ovar ends, or .quc'valant
with same tTotal pressure 4 consider only maion.'
! >0 (b-a) from ands,
FF‘” 3. Small strains where A can be considered ,
> .
constant (ro necking aeffect),
X
o °
FoRrmMuL A T—{
.
a -
e
1
E' H R
9 . |
-




T —.mr\.rn. b

T

~147-
TEMSION — SOLID O HOLLOW CYLIMNDER - WITd CASE -

ER-C =R AMD CASE A SION — 1% ]
STRESS '

6 L9

BOUNDARY CONDITIONS:

Geg= 6= '-l"?g:s-'-)- y Z=0O,y 2 For solid

cylbndar :
o: a, & let a> o0
Gy =% twoughoul
Um ULy T=b
& [ S
STRERSS Ou CYl.lDERQ: \~
Gy = 6
6'---13'2 f’b’ v‘ vath
(3
, V(- =) &
P w e

e R TR =)
Foa Ty cAsS®E
V(- FE)e

B a, bm
et [e-w N b‘] ¥ e

P-—

STRANS & DISPLACENMEIUTS OF CyLiuDeER

€g =~ —é-i Y6+ b*:'_‘:',[o- ¥ (|+v)—:';'-,]}

€.=%

[ ’
u= --E'T{vd,r +¢$__;:-;[(|-1/)1-+(I+V)9‘;]} ,
W=+ Sy

STRESSES OM CASE

d.- (.
P s
Cp= E:_"_:T (" %

FoORMUJILAS T2
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STRAWS & DISPLACEMSMTS OF CASE]
& = - - Eo-w0- e 3}

Ey= - ~'§-‘§v‘s. - z___—g;—':—::[(l-%)+(ny‘).$_'.‘]}
€= %[v‘c. —EE-_?;', (-]
R = -T';;{ng.r-g_%[(t-v,)ri-(nv.).%_:]}

w,= 22y, 6.-—5:%:— -]

ASSUMPTIONS ¢

. Mo end eaffects

2. Small strains

3 Shedr due to w-uw, of lesser impertance Tthan

matehing [VIE T Py
Fer Iw‘- w]:
A

# —E(-2zv )6 < (-2v2-®)e
ase _ D - »
= (=) 25 (%)

"

~0(8i6) «<a

OQMMALAS T

=

"

4
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TELSIOU - SOLID OR HOLLOV CYLIMWDER ~wITL! CASE - BOUDED

CYLINDER & CASE M TEMSION -OLIFORM STRAIW

& 5

77

BOUMDAY COMDITIONS:

MM

6,=0: Twa,c

oz o

2

U= U r=b

N

W=w,: Zwo, }

NP OIPOPIIPP,

N

=P = wr-a) 6, + (- 6. ) . x4
a w (c*~-a")
= {o*~a") 6, +2bh 6, [Thin casal

b*— a*

BATRESSES OM CYLWDER:S

76"'1’:%202

wm0-9+ @0 B+ 2 () e- e+ (e S

FOQ Twnl caseE:

Pme VO UG
TS -+ )+ 25 =

STRAIUS & DISPLACEMEMNTS OF CYlLIIDER:

€= - w{r o - nFeen £}

e.a-%-
us-—'g—{vo'r :.” [(l-*)rﬂxw) 3
we-2yg

FORMUL.AS T-&

[ P

—
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| S
} 2
STORSESES O CASE 2 :
; Vg- G Py ._..
5 .
--2F :
. % - (‘ -‘l’g)
! .
' SToAluS £ DISPLACEMEMTS OF CASE: 3
o= e~ Ehl-wzorw§) :
6. - 2¥ [1), = .. (l- ﬂ.)]
u =~ fue r-;.-‘é{:[(a-mnmwa%]} -
29 > g
w, = B[y q --z?-.—f,(n- w)x 5
AssureTIONS! o
1. WMo end affacts ®
£ Small etraine
S W =25 ne- 2% (t-*k)] -
FORMULAS T—8_
b
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M S " S S A B oo A LR S U R UL I I R T S R T
T v Lo D e T T
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TEMSION= SOLID o2 LOLLOW CYLIUDER-WTH CASE-BOMDETD
CASE b TEMSION O CYLIMDER Al TEMSION

. See previous pages-for cylinder ¢ case both in tension
and uniform strain :

< 6 <

FoR casm Oauy W TEUSION @

et : [ A X & wih W

STTTUATWEVLRARNNG

w22

2N N

FOR CQYLIUDER OMLY KJ TEJdsSION

a
~
N
"

Let : =0 e wa

ASSUMPTIONS ¢
l. Vo end effects.
2. Small atraing.

3. Sheaur due to w-w, of lesser importance tThan
- matching U= ue.

EORMULAS T-G
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Pid

T

’

‘
2

Fv*sj L

L.

. : [
- W L .

F.F":

- LN

- o8 VA S et - & . —— e

Emm-—va ‘Txnn f-rr-w-r::—-‘-\"“i;nw-\v-‘—r\ ARt At aiousting A At de s Gl Bt e i e MY L v e G ;« —;
2. . L e . . o M e
Ir
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TOoRsSIoON ECQOUATIOMS -~ ST VENANMT

ASSLIMETIONS:

l. Mo depancence on 0 coordinate (nct ssme as twist: 0-%) :

2 G=0=<Try= fn-O, no body forces
4
3 =0 (or 8= <) 1"

(= AL W - X H

BOLALOARY COMDITIONS:

I. Bnds {2=0, 1) rotate am
aolid dieks = ¥ lingar n ™

2. Cylindrical sur-fuce (r=b)

vniformly twisted =p Ty conet.,
4or r=b.

CAQTESIAN COORDINATIE Fotag:

t,.-: M0x g™ ~ A By O d’,:— 0 = 2‘"..9 .

u=-0xy4y5 Y=0xx, w=o

FORMULAS t—%

a s iR ma P Mens o B e i -
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‘ -153. -
' ToRSION EQUATIONS — SECOMD ORDER
ASSUMPTIONS o
'y . ;;;..
l. Wo dependerce on 0 coordinate
. . 2 0= 0= Ly=TUyg=0 .
. ; .
. i .
3 ) 3. Mo body “forcee
E | . :
- ) Fmom aiveid's woTeEs, Racz a1 ¢ 833 .
. i
I N
- : R {BI ag(a+ 2a,) - a.(za.-a.)]} <o
- . t Jaa(a+3da,) -
N i -
k}_. where the a, are coefficients of the endgy expresmon: .
=23 3 .
’ w= AJz + A, J.. + a,J J. v a, Ju.* AT,
3 where the J; ara imvariarts of ircreasingly wigher orders. ;
0 n
= ClRCJVLAR  HOLLOW CVLINDER:
l‘_
- A=Td-a) .
b " . a®
ﬁ B=)l=T S————-—b a l- I3
- 2 -
ELASTIC SOLUTIONS: i
1 - f = .
- A= “Z0+ 9
E...... a,= -5 -9 —]
: T +vyu-2v)
h " C..
2 Ay= Q4= Ag= O *
] ARAT
e~ €,= — == -——) pea®
L £ Py (nv ( ) -
- Eommucas £-2 2
” e —;-5- E\T/Lu;: TEFWITE ELASTIC DEFORMATIONS® delivered to
p - The Engineering Division, CQalifornia Iratitute of Technology) .
3 1953, .
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TORSION) —~ SOLID _OR HOL.L.OW CYL R IDE -0 CASE

«154=

BOLLIOAY COALNTION?S:

MAT
T Tgy=pmBr ==y

«" zt'=° P A=mO,

O"S'C,‘S'E"SO :

L

r=b (=» 6'.:0)

STRANG § DISPLACEMENTS:

=Y "7‘5'= or

“,::G.:G.:I'r.:s Tre=0©

v=5r,. de = 0r

w= w==xo

TORGULES

My == -j'%-.- (b.- a")

ASSUMPTIONS:

1. End surfacees (=0, '.) TrolLale as wold

2. Surfaces =zx=const.

3 Eyx=x0O =p PR

SERCOMD ORDER2

R ATL AN S
€,= (|+v < 0

DISP L _ACEMMENJT

FoRMULAS t—3

reama- plana

o

dinxg

.
PO WS
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TORSION = SOLID O LIOLLOW CVYLADER —WITH CASE

CYLIDELR AaMD CASE (ADER TOROKOA]

BOULDARY CONDITIONS
Ta Togm AO0F, Gu=Tyr=0: Z=o,l

T2 Tpg=Tyg=0 3 r=c (= 6=0)

STRANS & DISPLACEMENSTS:
r=0r, v=0rr

G =G> &, = = f',..:- U= Ww=sd

TORGJE
Mz My + M

= —"";_‘ ®-ah+ -—-—-""‘z“e (c*-8)

'==_”_*z‘..9.(b‘-a‘)+ 2w 4 0nD®, for thin case, (h=c-b) .
EQUIVALEIT SLSAaR HMODUL.US:
- p'-a* c*-b* -
Am M M .
co- ¥ .
3
= o+ ';’%;“—/"c » for thin cace
ah i A
= M+ b e fLor sold cylinder g thin case
ASSUHMPTIONS? -
1. End surfaces (2=0, 1) rotate as solid diske.
2. Surfaces Txconst. remair plane.
3. ;=0 =P <]

4. Mo ncrmal (0)) inferacliorn betwzan cylndar ard case.

EORMMULLAS t—4

T pXGEaN

P O . |
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TOOSIOM=SOLI0 02 LOLLOW G\ MDER-WITLI cass
COSE  (AIDER TORSIONS — CYL WD (IANIBONIDED

Bowubaran- COLITHTIONS: -

Z= t,.aﬂ.ar, c‘ o] t.'tO H .
z=0, £ & b3 rgc (case ony)
C=ZergxTyy=0: r=c

All stresses zare on eyhmdar

" sinear theory.
STRANS ¢ DisPlLACEMENITS om casa:
Ta=0r, v= 6re, -
Com &‘hﬁtxntar"au-urab B
- TooGUe : z .
— WhO . o . - -
M=t 73— (c™-¥) -
= 274 6hb, For thn case
ATSUMPTIONS: =
| 1. Torqu; appliad only to case.
2 Cyindar in no way receves lear from case oF and plates.
- 3. €,20, hena B <<
A
ot -
9
.&
. SECOMD oaDen THEORY
- = - AR\ o ; ; '
€, =~ -Tri-)z e, and if endplates ara flat Thay impose »
:..,.:. strawm on <he cylindar 3 -
- :
I‘L_-._:_
= O =€E, asauming E<<K®, and no shaar transrittad.
L.' .
FORnL L, A = N
to”
o - -
1
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RSO - \ =2 Lt ¢ D =

BOLNDARY COADITIONS:
Teg= MOY, 6= Ty =03
z=0,1 & bSTSC (ory tocase) ;
0= Tre=Typ=0: =g
V,=Vv= 6be: r=p
MOTE: ‘This i idertical to toreion anpplied To both case and

Cylindar at z=O, [ N

STRAN & DISPLACEMMEENT

Tox = 8%,

v = drz

TORQUE S

M x —’—r—:—q-(b‘- a') + 2wm, Ohe, thin caee

EQUIVALLENT SHEAR MMODLULSDS

& =ﬂ+-$-?.’—;;ﬂ¢ » thin case

4h
b

o A4+ M for solid cylinder ¢ Thn cace

FormMuLAS t-6
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ST N T, LV T w VAT e TTAT

BOUNDAIZY COMDITIONS!: °

= 7.’”-_-/(01", 0’.2 t"zo:

!

z=0,l & oz T b (cylinder orly)

4

022 Tp=Try=0: T=C

AN

A\l stresses zTero on case n

linear Theory.

J I
4
BTRANMS § DISPLACEMENTS o Cyli~dar:

i | WP,

1

Tpey= 0T,

v= ore,

Gy=EyxEem Ty=Vp==Un J=0

ToQoum

M 3_1'_';‘_"_(9. a*%

ADSLMPTIONS

. Torque appliad orly To cylindar.

2. Case in no way receivas shear -from cylinder or
0<< i

3 €20, hence

SECOMD ORDERQ “Tr-amOtIv:
i-v\ -aty @
(=3 ~
== (anw-- T
NOTE; 1f cylnder is ronelastic, this stran is different.

TORSION -SOLID_ OR OL L _ OW CWLIWIDEDR -WITWY CASS
DER2 2 TOoRS — A ED

7

erdplates.

In Sact,
Qiviin has found this To be positive for rubber
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ERAVITY=-SOLID OR LIOLLOW CYLINDER-WITH CASE-PURE stEaR

== 8 B.= 18 .. H

5%z | Tk 4 oq = o
o T *¥3

BOMDARY COMDITIONS:

Lyg=0 : =X

w=0 : r=»5 [~

STRESSES:
Tois _%s_ ('?: -r)

STRAM & DiISPL_ACEMEAST

A N C J T

2a\T

__$3 (-1 . 'b)
W= z,u( 2 " In ¥,

ASHUNETIONS 3
. RGD cAasE.

2. NO BEND EFFECTS o EQUIVALENTILLY Akl WENITELY
LONG CYLINDER.

EORMLILAS G- L

- TVE T W T ¥

» -
-
-—
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THERMOEL ASTIC EQUATIOMS
EQuLBRLM; -
t‘—b—-« -
L] N
S o —
T ] .
f
STEEss FuvcTou;: N
® 2¢ e
=¥, G=3F L
STRESS - STRAN ;
,“,’—-—A
] r’""’j KX
€r=#€[0’,-— Y(G+ 0',)]+ oT ~——
=2{0-v(5,+5 ) :
. [=3 [ ] («r .)]+ T .
1
er=g{0 - V(o +5))+ar §
__der -
0, = Ae+2x€, =8y ) .
6, = ue+zue.-~‘i&;:. C=ErtEy+ &, o
g Am2E -
= - T I+ 9)Xi-23) 9 +)
G = Ae+aueg,- -2E1 )
COMPATIDNLITY §
1"—3%-}- €Ey—Ex=0 -
BLanE sTRess;
d% | ad 5 T A
T H=ee T ¢=-2=|rrariSri S
a
PLoli= STRAM; -
r
e 41 30 _ b o> o 1
SRtT TG e ¢ llrrers S G
C Ay ARE DETETRWIED FROM BOUMDARY COMDITONS. ]
FoRMUL.AS AT~ ] -
i
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TEMPERATURE -~ SOLID OR

Plone sTREss; S

.0,=0: r=a,b

),
\/J
\17
N
{

- anas
P

6;:- [~

sToessas:

o;_(b“a') (| 1"') Trdr rs

AV
U
/

r
STrdr
a8

__om w(®
fo= b“'-a'(w%)LT"d'""% Trdr-oeT

£ DISDLACEMEITS }

»
== b-.a-[(l—v)—(wv)%] &rrdr— (H:-)"‘ Trdr+ (I+3)dT

e ol at [ v .
€= b‘-at[("")"'(""")"ﬁ] [’rrdr-& S——"":‘)d Trdr - -
. B
>

23al
e‘ == br-at LTr‘dr-b (I-\— 7) oT

> r 5
' -] )
‘e [('~V)r‘+(|+v)i;l] ST”’"* () iTr dr

a

b
=] 2vd
W= [ Dot L‘rrdr +(1+v) a—,—]!

TENPERATLIRE COMSTAMNT 3 , :
Ur': O'.:- (o]

Er=Ey=Eg =0T

U =orTr

W =oTE
ASsuMETION:

- . N maaD =EEER -
FORMUL AS AT—2
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- SOLID o -
fo—b —f
E ]
PLALEE STRANDS
G=>
QAIDARY COMNDITIONSS *
—A |-
=0 : T=a,b %
1 z
W= O H
= ! !
i

== ]

> r ',ﬂr'—?“\
6r=(l-ﬂ°;(t'.a-) (l" %)ST rdr— (::) = S.T‘r'dr \(___:J/

» r
= o
% (i-—v)(bﬂ-a-)(“"si-")g"""d"+mi~rrar- ser

_2ve (" BT
Ur:(\—#)(b’-a‘) ETrdr-— —

S ——

STRAMS & DSOLACEMEIITSS

_ e _a i+l r +9
EP"(‘_yXB_a;)[(P‘zU) Tr.—.]frrdf‘ m &T'—dr-'._':;’_d?

€= 1Y) da,)[(u-zv)+-$;';] Trdry N\ ey

=0-ay) oy

o ~r
-_(_‘:.y_)d__ - at 14+9)d
=g F)frrars {8 rar

TEPERATUEEE COMSTAMTYT $

Gr= 0,=0O

= - =T ]
€p =€y = (1+V)T
u= ((+y)urr

ASBLMMETTION] 2

1. NO D mErEEcCTS.

FORMUILAS AT

U |
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e e e e e v et = e e @ s = e e o areta o
e e ———————d
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TEMPERATURE-SOLID OR 1Ot OW CVYLILDER-~-WITL] CASE

PLoans STRESS:
BOUMDARY COMNDITIONS:

0’,::0: r=a,c

6.=°

u| (assumm W= ug)

rab u‘lr-b

SBTRESSES N PROPEL.L.AMWT @

ptp’
= b‘-a'( -3- + o e (! r_.)S:rr-dr-« = i‘rrdr

bt =
G=——o(+ 35 )+ 2 o a.(H— r-)g

== &Trdr -oET

STRAMS 8 DISPLACEMENTS W PRODELL.ANTS:

er--—E(i:_”;t)[(l-v) 03 ]+ ~n S )-(l+v)—-]frrdr—

- -S————H:f_)dsTrdr +(1+v)aT
)
-

€ =

’ es(b' aY)

[(s-v>+ (H-v)

»
[(l -4+ V) =5 :] i‘r rdr+ S———”’:_’Zd Trdr

b‘ a*

_ _2Byp zud(
€= Eeay b= [rr-dr-i-(wv)u'r

u ‘::———-L—-[(\ v)r+(|+v)———]+ [(|_y)r+(\+v) ]STT‘*"*‘

E(p-a%) B-a .
. R a2 i‘rrdr
gy 2va
[Ez(b"—a') - b STrdf"F(l“'V)dT]x
- 20 (© ' : .
, E;ra,y .Trclr ~ol T

T =B+ (vl s b
= re

FoRMULAS AY-—4
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TEMPERATURE - SOLID OR HOLL.OV ' CYLINDER-WITHY CASE

PLAME STRESS COMTD,:

r
= c._b, (I 2= (-5 Sdel" — &EBelrrar

0’02 C' rey (‘+ = ) + &E‘ (|+ )Frrdr-}———-d‘e‘g*rrdr— AT

TRAMS $=3 aAC TS W :

tFp’
s= w0t RS- "'('“‘)—F]ﬁm+

~{bde *‘:_‘2 e yer4 (1430 eLT
>

=m0 Sl wr o MF’ rer
+_(.__T_t:2:2'*_.§;rrdr

2980’ 290l

€= — = obh ~ C._»‘j-rrdr + (1+)dT -

U= et (0-r (+ S+ 22w+ (+v ) S-rrdr

Lo (T

T
»

u":s[-— 2D 2"“"‘§rr4r~+ 1+3)oT| Z
< E(c-b5) (s T]

b‘ pl
h

U= =5 + ol bT

} (o TN casm)

we=g -—M z
[ LbE! +oteT)

EORMULAS AT — §

I
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TEMPERATURE — SOLID OR 1HIOLLOW CYLINDER- WITH CASE

jo——C i
. PLavE STRAMS jo—b>-
-3

O",..—.O: r=3a,c

BOWWDARY  COMDITIONS ¢ <
> C o —M:_
i

w=0

STRESSES N PROPEL.LANT G

] Pa—r S -
—_— "’ Q‘Ff—"-j" % 5,
F Q’"_ (b*~a?) (' 1’")+ (- v;(b' )(‘ )iTrdf‘ @ .o

|
{
!
{
1
1
l
t

i

oy Trer

== oy 1+ ) et e f“‘""( v)r*LT"d’
e )

0= iy

2vb'p’ 2voE SvET o

%= Temay T aeea), T ==y .

STRANS 8 DISSLACEMENTS W PROPELL ANT:

]
(+NBD’ 1, at), (+nd -2
- n e g v«]ST*““’

B

, L (1+2) -+ T
3 _—(|~v)r’ S‘rrdr+ X)) dT RN
= G+’ 2, +0d ¢ 3_:_5’
. - =" Ep-ay [('“2”)*” 1*']+ (z-v)(b*-a*)[(' 29+ r-*] Trar
® . -
== (l+v)u N
3 . (I e
: . ‘;-L: o =
. +n B [ 2, G+ 42
3 === \ (—29)r+ l+ =D ) (l 2U)r+ f.] .rdr
® . —~—
. 14+l (
3 + =0+ J Trdr

R FORMULAS AT—-6
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TEMPERATURE —SOLID OR

HOLLOW CYLINDER-WITH CAGE

> .
= 2°'f"'a") Trdr - T G (58 )
hd (xor nany casm) !
(+n[0-20)ar] | (-3 bE g
(t~—a®) hi, “
Bl STRAM COMTID.:
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3.3.3 Composite, hollow cylinder of K layers under internal pressure.

Inasmuch as it is often of interest to aralyze a multi-layered concentric

. 4
geometry and hence be able to study the inclusion of a liner between the grain
and case, or a radial incrementally cast grain, some elastic analyses pertaining :
to this case are summarized(l' 3) by Pister.
Consider the nth layer of a long right circular cylinder waere we let T -
| denote irner radius, p, pressure at T Tt 1 denote outer radius, Pot 1 pressure
P 14
X at rn + as
=
\
Eos 3 Vovu -
} ), 3 Yn
3 For plane ¢1r253 the general solution ot the displacement equilibrium equation is
X Uptr)= ALy + 2= (3.3.17)
14 r ¢
h wrere A= 1= Vn pnﬂ"‘?nhr"ﬂ
3 "7 Ea Vo —
A *n V2T (P Ped) (3.3.18)
3 B,= =, . =
- A T = %
- The k-1 contanuity conditions at ihe internal boundaries together with the stress ..
ﬁ boundary cond’tions at the external boundaries are sufficient to determine the
Z; . constanis A , Bn for each cylinder in a given case (or alternatively, the internal
5 boundary pressures). The continuity conditions are of the type
\_7 MUn == Upgy at T=v.. ’ ne=A, 2’....’ -t (3. 3. 19)
- -
@ Combining equations {3. 3. 17), (3. 3. 18) and substituting in (3. 3. 19) leads to the result:
LaR+MaB NP, =0 3 n=ly 2y--°7y -1 (3. 3.20)
i3
0.

T
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where

<3
L= 25 (e 53

-H.-—[ (TR T + l+i’,. .)(‘;:{-t:‘)*'(%:f ';:‘4_ H;‘mm Y-‘.’.,)(f,r";’)] {3.3.21)
]
Na= -?-é':'al-(r,.‘..- )

To determinc stresses and/or displacements in the nth layer, obtainp n* Pat 1

from the solution of equation (3. 3.20) 2nd use in conventio.'ul cylinder equationn,

setting PP, and Po® P, 1 For plane strain replace En by Enkl- ynz) and
v by vnll - vg.

Example: Internal pressure in three-layer cylinder

Py= P;,

} External body conditions
R= 0

Setting n = 1, 2 in equations (3. 3. 20) gives (using above conditions)
LiP,+ MO+ NPy=0

Lg?“" M)P.'- (-]
whose solution is

- LM Py
M, M= LN, ? ?‘a

P = L LaFP
3

MMy ~Ly N,
L, M, M canbe evaluated from equation (3. 3.21})
Pressures Pj» P+ P can be used in equations given in Section 3.3.2
for the determination of stresaes and displacements in the layers of the cylinder. In

view of the cumbersome algebra involved, results will be given explicitly only for
the instance in which the outer two layers are thin,

Thin Liner and Thin Case

b
h he
-—S!«t, Tl , )\'r.-g—
¥’ = interface pres.ureat T=b 48

H
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using above value of p'.

in determining stress distribution due to pressure.

3.3.4 Temperature distributions in cylinders.

and strains can often be calculated assuming elastic response.

- casting and curing.

s il i R AU
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Plane Strain e 2 P. (=)
. 1+ (-2 T """h —TYon 1
. . Y= (l-;")"' X3 t-v:) l
. { Streues} in cylinder, same as formulas P-12, P-14 in Section 3.3.2,
Strains

are used, or if grain stiffness were increased, the liner could become important

LR d At MM e ML AL A S i S Y

Stress in case: Stress in liner: .
. »
G, -y -
= e, 5y %= he he mg
b b wm R

Discussion of Results:= As can be seen from the expression for p on the
previous page, *:~ presence of the liner does not affect the stress distribution in
the grain, since the dominating term thCYbE causes the fraction (kz- N/ ~nn -
to vanish for typical geometry and materials. Accordingly, the liner is of no ro-
significance preassurewise, as long as the ratio thc/bE remains large, as it will

for metal cases. Inthe event that non-metal cases with significantly lewer moduli '

- : The thermal stress solutions given in the previous Section 3. 3, 2-require
knowledge of the temperature distributions. Temperature changes in propellants
are due almost exclusively to heat conduction and the (exotherm.- or endothermic) -
reactions during curing. Tempera‘*r: change due only to straining is inconsequential, "
whereas radiation dur 'ng long space nights may be more detrimental to the chemical
composition of the propellant than in heating. At any rate, we shall first consider
temperature distributions from the heat conduction equations reviewed in this section.
While temperature distributions are generally transient in nature, the stresses
This is the case -
when the mean relaxation time of the material is appreciably larger or smaller
than the characteristic time for thermal diffusic 1, ( Ke(z) -1 » (see Section 3.4.5).
Particular men:ion should also be made of the Rohm and Haas articlel(?" 3)

and those of Nichols et al 3:® 3-7) geating with thermal conditions during

——n
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TEMPERATURE DISTRIEUSTIONS

v v 1 a2 AN
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e = 2AaD = :

v 1 o7 T
(Th++3F)=3F

SEPARATIWG VARIABLES?S

Tt = rre ™"

d'e
drt

+ -‘1,-.-‘3:_- + "R =0, BESSEL'S EQUATION

TEMPERATLRE IWMALLY ZERO, OWTSIDE TEHEFOCRATOURE SUDODEMY
RaASED TO K

n ()
T=Te——-
In (E)
- E e-xdtJ.(adn)J;(bun)
‘re Je@dw—JX(bota)

I J.(f"‘") Y. (2ot} — Y.(f'd..) J,(ao(,\)]
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J.(ax) Y (bot) ~ Yy (as) J(bot)=0O
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TRANSIGNT RADIAL. FLOW_ (conT.) e

TEMPERATUREE NITIALLY ZERO, INNER SURFACE INSULATED, oUTER
SURFACE — COMVECTION TO SURROLMDIMG GASEOUS MEDIUM O
TEMPERATURIE g 3 DIMENSIONS OF CYLINDER ; R&< r< W.

X Ty

Te—T = %:.:. -ﬁ(‘m,B,Si) {,(vst,m&) e

s
K= -—-——-o‘t B= hRe
FN [ 4
. h = CONVECTION COMEREICENT
L.

m = f2e A= THERMAL CONDULCTIVITY

r
W
L 4 e

§=roors or  J,(mH[IVN - BYUOI=Ym0[8 38)-8Iu0)

w8 J. (m".l[si Jn (8'.]-‘ B8 J.(s;)]
[5‘» Jts)~-8 J.(S-.)]‘- (8*+ 83)J2 (m§)

f,(mp,8)=

HP8,m) = 3,(p5,) Y tm ) — e (P5) 3, (mE)
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3.4 Discussion of Other Design Applications

While it is obviously impossible to discuss analysis techniques for all the
various design configurations which might be proposed for snlid rocket grains, it
is pertinent, nevertheless, to discuss some of the factors which will be encountered
in design applications. As intimated earlier the pressure or simulated ignition
loading of a thick walled hollow cylinder, even as extended to star grains rhrough
the use of concentration factors is at best only an approximation to the actual
problem, whether treated viscoelastically or elastically. It does, however, serve
the very useful purpose of conditioning the analyst's intuition which then permits
him to make judicious extrapolations. In order to further develop this background,
it is therefore advisable to investigate other cases of an idealized nature.

3.4.1 Spherical grains

The simplest geometric extension of the hollow cylinder is the hollow sphere,
Here again it is possible to obtain some fairly useful results, although the basic

formulas are developed for the complete shell, i,e. nd port is considered for the

exhaust to escape. Such discontinuity effects would have to be superimposed upon

the basic stress distribution later. I .he inside and outside radii and pressure of
the hollow sphere are a and b, and P; and Po respectively, the following relations
have been deduccd(B' ld)-

Pressure loading.~ For an uncased elastic gephere, one has

B (R~ R)-A(P.-R)

= > = 5
o &0 PamE e
. i3 23T (X
o= [N+2(3) ]‘j’-, Nl2(Z)+1]% (3.4.2)
2FZ)P (R~
u, P > (1) a7
= E()\'—\)(—})B[('"z”)(%)+ 3 )"l (3. 4.3)

NP TS ey
"B BT ]

if there is a thin reinforcing case of wal .hickness h and modulus Ec and Poisson's
ratio Yes and the sphere is subjected to uniform internal pressure, the pressure
at the propellart case interface, p, is

F_ 301-9)
T’i'— 2(1-29))\?4-(!-0-1/)-9(g-y‘)()@_‘):‘!:‘ (3. 4. 4)

- . e i ———— At aane]
e e P a e e M=
PO R WS e e

D ot o L el 2 b2 4 ALY
e a i Ty TR W WY e, WY ST e « r
eTRAT T Y R N T e TI T . .




TETTTY

1
-

T

S

. S e
B o e v a Ren oAb b tes S Sh i o i <
R AN . PR Lt .,

[T W

W mmm mem w b

WTNET TR T

- e T TR « e am e

-178-
wkich for a rigid case, Sb/Ech << 1, reduces for an incompressible material to
P _ 30-9 '
' \+¥ =1 (3.4.5)
[§ v-i

as it should. These formulas can be compared with the similar ones for the hollow

cylinder and certain associations can be drawn, particularly the occurrence of the
).3 factor instead of lz.

Thermal loadigg; =~ Consider the situation of uniform temparature rise, AT,
of the entire case bonded assembly.

The equivalent interface pressure on the grain,
allowing for a thin liner with properties denoted by primes, is
: {ot/ox) ~— (ole/ot)

— |—2‘-: + -3 ='W
P . (-)* T B
2ExAT 20— 20N+ (1+¥) | (1-3L) EB/AEH) (3. 4.6)
)\'-' + \+ l"ﬂ‘ B ﬁ
-y Bh

For a mechanically rigid case (Ez - ),

T D= (%)

with an associated strain at the inside radius

3230~ ) [1- )]t EAT

ol = - 2 (12N +(1+v)

(3. 4.8)

If one has the case of steady heat flow through the grain, such that the case

is at a temperature T, and the inside at a temperature T such that ths temperature

distribution is
Aa

v

T=-) R (3-4.9)

there results, at the interface, a pressure of

—

® _ Ey-aX+vA—t
Eo(T-T) (=) [2(i~29) R+ 1+9] (3. 4.10}

3.4.2 Spherical-cylindrical junctions.

One problem which has continually causﬁa difficulty is the stress field where

the cylinder and head cnd joins. The actual problem is tremendously complicated

by the star intersections; consequently at ithe prcsent time one can only hope to

estimate the order of magnitude of the stresses by a knowledge of the cylinder and
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spherical solutions independently, and the gross moment across the wall estimated

from thin shell theory. (The pressure stress concentraticn factors for the cylindrical

grain(3' 4 are expected to be conservative if applied to spherical sections.) L
. A
Dux'elli("'u ), however, has recently obtained some photoelastic data for this IR
. combined geometry with web fractions of the order of fifty percent which should A

provide at least one check point for engineering estimates. .
Outside of photoelastic tests, it does not seem possible, at this time, to

obtain very accurate estimates of stresses irn this geometry when it is further

complicated Ly star cut outs and igniter ports. The analyst will have to continue

relying upon indirect inferences of the stress field, including the proper use of -

concentration factors for related geometries as developed by Neuber(s' 12} and . ’
Peteuon(s' 13).

-

3.4.3 Environmental and handling loads.

The usual engineering consideration =us. »e given to hardling and shipping -

loads, whose assessment is frequently complic > ! by potential thin shell instability

of the assembly. Arother problem of concern is the eficct of vibration upon the

grain and the grain-lirer bond during shipping. Some exploratory work along these .

lines has been reported by Baltrukoni s(3° .
In the sense that gravity force is environmental loading, onée could consider -

the problem of slump during storage within this category. Two basic problems of ~

interest arise when the gravity vector is vertical and horizontal. The first of these

has been treated by xnauss(?"ls), which will be discussed subsequently in connection

with failure criteria, and the second has recently been analyzed by Liani-(s' 16).

It is felt that sufficient initial information is now available to demonstrate the methods |

of analysis which should be employed, as well as providing some preliminary design -

data. It should also be mentioned that the slump problem during storage is closely

related, from the analysis standpoint, to the acceleration inertia problem. This ..

aspect of the problem has also beexn included by Knauss, whose solution permits .

estimates of grain deformation when the base of the grain is bonded or free foom

the base support. His work also comments upon the use of gelatin rnodels for

visualizing the state of deformation.
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3.4.4 Buckling stability of motors

One other problem associated with grain slumping, which might be mentioned, -
is {hat due to the stabilization of the sheil by the low modulus propellant. It may be
noted that the bonding restraint at the case wall may lead to a different mechanism .
- of buckling than for simple internal pressare in the thin shell due to the interface . ”
F shear. As might be expected, the buckling strength of the shell is increased. In
one investigation, Goree and Nash(3‘ 17) found the buckling stress in axial com-
pression to be increased from 5 to 65 percent with increase of R/t ratio {R = shell
radius, t = thickness) from . 333 to . 667. The modulus ratio was of the order of

105. Ir certain design applications therefore, the zsigner may be ina position to

take advantage of the increased rigidity.

3.4.5 Thermal loadinge

The problem of thermal cycling i+ one of the most difficult of those facing
the analyst. It is important to review the kinds of problems which can be solved
in a relatively straightforward manner, and then discuss those which are nearly

intractable. There are two problems for which present theory is adequate and
useful information ¢an be deduced.

Steadv-state approximation. - Tte first of these pertains to a grain assembly
r‘ whose temperature is very slowly changed. Inthis case the temperature distribution

is known, namely AT = constant, and any mechanical stresses arise solely from tha

differences in the coefficients of thermal expansion of the component materijals. In
the special case of a long tubular grain, this loading is equivalent to a uniformly
distributed interface pressure (Section 3. 3.2, formula AT-7)

m , E [+ ) u-G+s)ae]) oT .

E P= G- Li~29) b+ ar) -+ (—-+2YbE (3.4.11)
L (- aY) thee . .

' and is thus reducible to a pressure loading for which analyses and concentration

2 factors are available.(s' 4

RN A Y

The second problem is that of a steady-state temperature distribution such
3 as il'nposed by constant temperatures, To and Ti on the outside and inside re-

o spectively . Thus, whereas the former temperature distribution was constant in
both the time and space dimensions, this latter one corresponds to one which is
constant only in time. 71he interaction of temperature and mechanical properties
is thus confined to allowing, for example, E = E [ T(r,8)] which requires

%)
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essentially that the governing differential equations nr v include cozificients which
. become space dependeni, but nevertheless are still linear. Such analyses have

been conducted in the past, particularly in connection with gun barrel design;

contributions have, for example, been made by Hilton(a' 18). Furthermore, the

. time independent feature implies an elastic stress-strain law. Hence this problem e

also can be solved in a reasonably accurate and practical manner, and praviously
obtained concentration factors! 19) may be used.

A rough idea of the magnitudes of strain and casz bonding stress can be

obtained through use of the steady state elastic solution for a tubular grain with

temperature independent properties. For a case bonded grain in plane strain

subjected to a temperature To on the outside and '.['i on the inside, the temperature
distribution is

-+ In(F) + T In(R)
) (3. 4.12)

The interface pressure at the case bonding, assuming an incompzeasible

T=

Lt AR DRt S

¥
d

propellant is (Section 3. 3.2, formula AT-7)% .
<5 -
3 = iRE )R- - 22 (e} i
i P 3+5_[(T. (- 255) * T o1 2O e)] (3.4.13) ,
- e
X ) where o and o are the linear thermal expansion coefficients of the case ana
i propellant respectively, m_ the effective case rigidity E h/ La(1- zl )(X -1)b) ., o
_ A = b/a, and TR the temperature for zero strain, say the cure temperature. -
. *

Similarly the strain at the internal susface, ux< ul in determining low temperature
operating limits is *

3 (Te=Ta) i“""} { 3(A’-am¢1 L } R
TR e [( T T & RN=T" 2l (3.4.14) g
2 M ole 3(N-1)Me
i|+2 —E—-;—(H-ﬂ) ———E—--—~}]

g -
i whicli may be multiplied by the concer‘ration factor K Kg for an internally slotted
; gram(3 19), . .
1 % T.e expressions for interface pressure and strain at the internal surface which .
- - are g.ven on page 87 of reference 4.2 are in error; the above equations (3. 4.13) ——
9 and {3, 4. 14), should be used instead.
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If the inside and outside temperatures of a 50 percent web fraction grain
are the same, but AT°F below TR’ one finds a tensile stress at the bond of the
order of O (b) ~ 10 L E/ 4" or approximately 50 psi per 100°F temperature drop.
Without allowing for a concentration factor, the internal tensile strain may be of
the order of 10 percer* per 100°F temperature drop. Thus, conditions at either
the bond or the internal surface may be signilicant upon cooling. Geckler(s‘zo,
has also observed that transient considerations upon heating from the lower temper-
atures lead to thermal stresses of sizeable magnitude near the star poinis which
may also contribute to grain cracking. Also, Zv«/ick(?"?'l ! has shown that when the
temperature of the shell is suddenly changed, elastic stresses are monotonic
functions of time, and hence the maximum stresses occur either initialiy or finally.
However, if and when this is true for a viscoelastic material requires further study.

General transient problem. - The general prcblem of thermal strain analysis

involves first the knowledge or determination of the transient temperature distribution.
As mentioned, Geckler(s' 20) has charted certain transient data for hollow cylinders,
Nichols and Preuon(s' ) have detetmined the transient temperatures during curing
cycles including the heat sources due to the chemical energy of polymerization. In
this more general case, therefore, the temperaturc depends upon both space and

time; specifically, the dashpot viscosities and

ice the stress-strain law changes
with time.

It is this temperature dependence of the material properties which
causes the increased complexity since the governing differential equations then have
coefficients which are both space and time dependent. In addition, time dependent
strains rnay result from either of two diffusion type processes: transient temperature
variations or viscoelastic material behavior, Unforturately, it is not clear a priori
that one =ffect will 2lways dominate to the extent that analytical simplicity may be
achieved by alv;avs neglecting one with respect to the other; although some limits,
based upon th: validity of elastic apprs timztions, have been discussed in Section
3.3.1. The only complication which does not enter is that the characteristic
burning rate of propellants usuzlly exceeds the thermal diffusion rate, so that when

a pressurized grair; is burning out, the temperature distribution in the unburned
propellant remains esscrtic

need be calculated.

ily unchanged and only the viscoelastic pressure stresses

Returning to the sensitivity of mechanical properties to temperature, it is

found that even if an assumption of linear viscoelastic behavior is valid, there is

in general no associated or equivalent elastic prcz:blem such as cxists in the tempera-~
2 .

ture independent problem, Morland and Lee(3‘ ) havs re. ently analyzed this
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situation, incorporating a time-temperature shift function. It provides the relation
between physical time and a dimensionless reduced time, t'; namely

= (Lo 3.4.15a)
. KLTGO] 3. 4.

Note that when temperature is constant in time,

= 'lFt{_TT (3. 4.15b)
which corresponds to the notation in Section 2.5. Hence for materials following
this shift law, one would deduce that the characteristic stress-strain, time<tempera~
ture dependent, law for linearly viscoelastic media could be written in the same
form as discussed in earlier sections except that the reduced time t' would be used
instead of t.

However, while the coefficients in the stress-strain law are constant using
the reduced time, the equilibrium and compatibility relatious, in their usual linear
form, 2re 2 function of the physical time t. It is when the stress-strain law is
wx.tten in physical time, or alternately, the equilibrium law is written in reduced
time, preparatory to solving a particular analytical prob’»m, that complications
arise. To illustrate the difficulties, consider a speciai case following from Morland
and Lee's formulation; an infinitely long hollow thick-walled cylinder, symmetrically
loaded. Furthermore assume that the propellant materizl is viscoelastic in shear
only, remaining elastic in bulk or dilatation response.
then apply.

The following equations

cyer s 20, Or— O )
Equilibrium: Se+ —F— =0 Ope= $(r,1) (3. 4.16)
Compatibility: e~ Er_feno Ere=$(ry1) (3.4.17)
Stress-strain: -

Dilatation- 0, +C,+ 0= 3K[E,+€,+£;-3a(T-Ta)] (3. 4.18)

K = bulk modulus, constant
n _ d- o
Shear- [a.ad_t?+--- +a.](0'r-o")_.[b“-d—f;-+-- +bJ(e— ) (3.4.19)

a. bm = experimental material constants

Upon assuming for example a plane strain configuration which prescribes €.

and using the stress~strain law to express o, in terms of the remaining four

unknowns o'r. Og* €, and e° » the above four equations are sufficient to

e
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determine the solution, usingof course t' = St du/K ['r(u)] where the time

dependent temperature dist:ibution is preaumea known from a previous solution of
the heat-conduction problem.

.

For analytical simplicity, Morland and Lee investigated the steady state

situation T = T(r) with an agssumption of individual mechanical and thermal incom-

pressibility, i.e. = + €, ¢+ g = 0 and o= 0 respectively. Inthis case and

for plane strain ( €, ® 0), one had €, %~ €, and both strains were casily
determined in physical time using the compatibility equaition, e.g. € = F(t)lrz.
The stresses were then investigated using

20.(nKt) , TL(KLT)—Cint) :
S+ =0 (3. 4. 20a)

A " ‘
[-{.—r(—;;—:-:;rb e ao][q.(nt)-oz(nt)]-——-k-%ﬁ;* e+ p 2R (3 4. 200)

for Kelvin and Maxwell models. The essential feature here is that the Laplace

transform technique could still be employed, if desired, to solve a set of partial i
differential equations with variable, spacewise bui not time-wise, coefficients,
With perhaps a more appropriate assumption for propellant materials, ‘ b

- which are to the first approximation mechanically incompressible but with a finite -
coefficient of thermal expansion, one might assume a Poisson's ratio of one half, =
If further, a plane strain assumption €, (T-TR) is empluyed, approximadte -

equations for this situation, including non-steady state temperature, canbe deduced®

20, 0% - 0
S ,._f.?.l.,_o (3..4.213.\

€y _ Br-By _
r

o (3. 4.21b)

0.+ 0, =2 (€, + €y -~ 20 (T=T)] {3.4.21¢)

* Actually the coefficient in the dilitation stress-strain law becomes 3K/(1+ )
where 4 , in the Laplace transform representation, stands for a time dependent
operator ratio. On the other hand, ¥ = 1 for propellants so this approximation is
introduced for simplicity in the equations to yield 2K, a constant by hypothesis

ignoring the fact that a consistent use of ¥ = { would require K, elastically equal
to E/3(1-29 ), to be infinite. ’
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[a..-—n+----+a.](o;,-c.)=[b.. + -4 b ](Ey— Eo) (3. 4.22)

are
where it is now observed that the strain analysis cannot be conveniently separated
frcm the stress analysis. As previously noted the last equation has constz:t
coeff:tients only in the associated time, t', and if written in terms Jof the physical
time becomes a partial differential equation with both spacewise and timewise
complicated coefficients. Aside from the curing problem, these are the type
equations whizh must be solved to study the thermal cycling problem.

While 2 numerical solution of these equations may be called for, it is in
order to ingquire as to possible limit cases of practical interest. As mentioned
earlier, two diffusion type processes are involved, first the thermal diffusion

characterized by terms such as T=e et

» and second the viscoelcstic de-

formation responding to U= e":"r.:z.- e so that a consideration of the typical
time constants TXK(T)and { Wi )'l or their ratio - relaxation time to heating
time - becomes pertinent.

ta ot T KT
T, = K(MT nu = —ar (3. 4.23)

1f a hollow tubular grain is at zero irnitial temperature, i.e. reference value,

—

and the case at r s b is raised to a temperature T whiie the internal temperature

at r = a remains at zero, the transient thermal distributisn is (see Section 3. 3. 4)
b .

1 ~Ku,t
T = h(a) = J, (e e {J.Xd..)\’ (bot) - ‘f.('rd.DJ.(bd.)] (3. 4.24)

T g T TaEw-32ew
where K is the diffusivity and ot are the roots of
T () Y, (b))~ Yo (aam I (beta) =0 (3. 4.25)

Carslaw and Jaeger tabulate these roots. For a 50 percent web fraction, bl/a =2
and o(;, za o= 3.12, 6.27, 9. 42 reSpective.ly forn=1,2,3.
For example, if (T) is of order one, then choosing the lowest eigervalue of
the temperature distribution, otl = 3.12, a characteristic propellant diffusivity
of 107 -6
larger, one has approximately tR/tH =10 s‘t . Considering that characteristic

ft /sec, and assuming medium sized grains, say, two foot diameter or

relaxation times range in the order of seconds or less, one concludes that most of
th viscoelastic deformation relaxes much faster than the temperature is changing,
unless the particular propellant relaxation spectrum is heavily weighted in the

longer times.
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It may be justifiable then to proceed upon the assumption that the t'emperutur.
s distribution is quasi-steady, T = T(r,t_). With this assumption, a Laplace transform R
- of the shar stress strain equation with respect to physical time may be taken, and
h an associated elastic problem-~-with space varying temperature dependent properties-- -

can be formulated, and in principle be inverted to give the desired result, This . °
type of analysis is similar to that proposed by Hilton(s’ 23)

» except a Fourier transe
form was suggested in order to make use of the complex modulus representation.

By way of concluding this section, it may be said that if the characteristic

loading or diffusion times tyq are large or small compared to the relaxation time
tR then thermoelastic analysis with or without space varying temperature dependence

may be applied with a reasonable expectation of success. If, however, these times

are of the same order, then one would attempt to introduce first a quasi-steady
temperature distribution and proceed with the viscoelastic analysis. On the other
hand, in the vicinity of the transition region

whent =t a combined transient
. viscoelastic annlysis is nece“uy(l 24)

At the present time only approximations
to this situation can be attempted pending further study and improements in
appropriate analysis techniques.

7
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4. FAILURE ANALYSIS *
4,1 Common Types of Failure Criteria

It has been repeatedly emphasized in the previous sections that a complete
analysis of the structural behavior of a solid propellant rocket motor includes not
only a stress or strain analysis, but also a failure analysis. Whereas we have
previously aimed primarily at investigating methods of estimating the stresses or
strains in a viscoelastic propeilant material due to prescribed applied loads, we
now propose to treat the companion problem of predicting the maximum imposed
loading at which either excessive deformation or fracture threshold is reached.

In facing this problem, there are scveral difficulties to be overcome,
some of which are beyond present capabilities, Basically, most present failure
data has been obtained using uniaxial specimens tested to failure at a constant
strain rate, It remains to be seen whether such data may be used in situations
where the strain varies signi cantly with tiime, as during firing of the rocket,
Aside from the correlation u. multiaxial and uniaxial stress fields, some sort of
strain rate weighting factor will probably have to be incorporated in order to as-
sociate failure at an arbitrarily varying strain rate with that at constant strain :
rate. One such hypothesis will be proposed. Another important aspect, particue
larly as it pertains. t'o fracture, is the implication of the analytical simplicity ine
troduced by the infinitesimal deformation assumption. Most fracture analysis,
even for rubbery viscoelastic media, is conducted neglecting squares of the strain
compared to the strain itself, It is expected that signiﬁ;':ant trends will be re-
vealed satisfactorily, but more sophisticated analysis will be required before a
definite quantitative measure of this assumption can be obtained, Finally, it
should be recognized that,practically speaking, rubbery materials are essentially
elastic all the way to fracture, ard hence an elastic or visco-elastic analysis, in-
cluding large strain effects if necessary, is appropriate without naving to consider
plastic or visco-plastic effects.

4.1,1 Deformation criteria

Turning now to failure considerations, there are two basic structural engi-
neering criteria, deformation and fracture. By the way of example in 30lid pro-
pellant applications, they are exemplified by slump and grain cracking, respective-
ly. Generally,. the first of these is tied in rather closely with ballistic perform- .
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ance and storage procedures, that is to say, a maximum permissible deformation
without fracture ie more or less arbitrarily prescribed, If this is the case, it be-
comes a simplz matter to complete the analysis by finding the loading or time
corresponding to that state when this deformation is reached by applying the visco-
elastic analysis techniques previously developed,

One illustration is the situation wherein a second-stage rocket grain may be
fired vertically and subjected to inertial loading for short periods, say, of the
order of minutes. On the other hand, the grain, perhaps for logistic reasons, may
be stored vertically for extended periods, and in this condition also subjected to
vertical gravity forces but over a considerably longer time. Both of these situa-
tions require the prediction of time dependent deformations -- the first undern- g
gravity loading for short time, the second for one g loads over long time,

An elastic approximation for such a condition has been given by Knauu“‘ 1)
wherein it is shown that the inward radial constriction of a thick-walled case-
bonded cylindrical grain at the base depends upon the support conditious. If the
base is completely unsupported, the throat area does not choke at all, but takes up
the general deformation pattern shown in the sketch, On the other hand, if the
base is rigidly supported, there will be a choking tendency as shown., Its magni.
tude, in the particular case where the web fraction was f{ifty percent, was found to

UMSUPPOrTHRD sSuPPOR TED
[—-7 % ¥ arain

be of the order

-1 BPP L '- (4.1.1)

where Aa/a is the relative change in port radius, p the density {pci) of the pro-
pellant, and n the number of times gravity load. To examine the effect upon bal-
listic performance, one could compute the relative change in port area AAp/Ap
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to be twice the above figure, The previous calculation is based upon an elastic
analysis, when E is the elastic modulus. One approximation to the time dependent
deformation for incompres;ible materials can be obtained“' 2) by replacing E by
its viscoelastic equivalent, which for a three element model gives

-3 o
e 2ol gy B

where it may be easily checked that for long times E+E, the rubbery modulus,

and for short times E -bl-:g. the glassy moduius. Alternately one may approximate

;e the tensile creep compiiance Dc,p(t) s gty O of using a form similar to that
E derived for the relaxation modulus from: a modified power law distribution function

(2. 4.85), which is

L -
F, . u
o Dept1= Dg+ (D =Dg)[ 1+ 24 D‘g — K(ﬂ] . (4.1.3)

R which for long and short times checks the elastic and glassy compliances D‘ and
M Dg respectively, and in the transition region, t «+K, gives

L n
o Derplt)= D‘+u>,-.1>‘)[.+ (%.‘)3"] ~VD.5g {4.1.4)

consistent with the relaxation modulus value (2. 5. 4). In this case, one may use
o (4. 1. 3) and write

AA
E "T:‘ = 40¢bn D, (1) .- (4.1.5)

RS From the experimental standpoint, it would also be approximately correct to use
- uniaxial tensile strain creep data at constant stress as Dcrp(t) in (4.1.5)

- It any event, the relative amount of choking is seen to depend upon the
mechanical properues, including the characteristic relaxation time, If therefore

the maximum permissible blockage were specified as the design criterion, one
could compute the time at which it would be exceeded for a given gravity load. A
_ reasonably large grain, for example, might have an upper bound of approximately
ten percent per g at room temperature.
Slummp may also occur during environmental storage of a grain in the
horizontal position. This situation has recently been considered by Lianin“‘ 3

and the results may be used in a similar fashion as those above to predict defor-
mation configurations,
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The analysis given is approximate, but is presented to make the point that
if a deformation criterion is imposed, it is merely necessary to refine the appropri=-
ate deformation analysis to the accuracy desired for the prediztion. As the procedure
is straightforward, although not necessarily simple in a given problem because the .
strain analysis itself is complicated, no additionzl remarks upon the deformation
criterion will be included at this time,

4.1.2 Fracture criteria

In contrast to deformation, the mechanics of fracture requires a fundamentally
different type of investigation, Fracture first occurs on the microscopic scale
where the medium, particularly for filled propellants, is non~centinuous, Hence
the inalysis techniques, bascd as they are upon the assumnption of 2 macroscopic
continuum, are not valid at the point of fracture. For this reason the problem of
fracture analysis is markedly more complicated inasmuch as it requires a knowledge
of molecular behavior not smoothed out by the macroscopic averaging process, On
the other hand, it has proved possible to determine certain extremely useful gross
fracture characteristics, for example uniaxial tensile strength as a function of
strain rate and temperature. From the engineering standpoint, it is desirable to
extend, empirically if necessary, such limited information on special test samples
to more complex geometries such as a star grain,

The general requirement for such a correlation is by no means new, although
a precise statement for viscoelastic materials has not been particularly emphasized,
enumerates, for example, several different {racture criteria, primarily
as used in the study of metals, and it is worth restating them here. Each criterion
defines some particular functional »f the stress field or strain field, the value of
which is to be determined empirically, because molecular theories of strength are
not advanced to the point of calculating such limits theoretically. When the appropri~-
ate functional is exceeded, the associated yield, rupture, or fracture takes place,
Seven such criteria are listed below:

a) the maximum principal stress

b) the maximum principal strain

¢} the maximum principél stress difference (or shear stress)
d)} the maximum principal straindifference {or shear strain)
e) the maximum total strain energy

f) the maximum distortional strain energy

g) the maximum conserved distortional strain energy
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Criteria (2) and (b) utilize the fact that the maximuwm stress (strain) at any
point in the materizl is the largest of the three principal stresses (strains), o,,
Ty 63 (ei. e, e3) at this point. In siinple and biaxial tensile fields, these funce
tionals are ideatical with the yield or ultimate stresses and strains for these
{ields respectively.

Criteria (c) and (d) stem from the observation that many materials, pare
ticularly those which evince ductile fracture (sometimes knowr as shear fracture)
do so along a pair of planes or a cone lying in the direction of greatest shear.

‘ The maximum shear stress has the valuc ;’-(cr1 - ¢3) and is obtained on a plane

- inclined 45° to the direction of the principai normal stresses. This criterion is
not suitable for mathematical formulation since it is necessary to determine first

1 the maximura or minimum stresses (or strains).

’ An alternate criterion based on a mean value of the principal stress dif=

ferences was proposed by von Mises“'s). This takes the form

Eé:’ V2 0. = Y(0- 0 + (0~ 03+ (G~ 0)F (4.1.6)

N and &, is termed the mean deviatoric stress. For both simple unjaxial tension
= and biaxial tension, o, is identical with the yield or fracture stress. For pure

s shear on the other hand, the yield stress turns out to be to/fg.‘

ﬁ The mean deviatoric stress (or strain) has not been listed as a separate

’ criterion proposed by Huber and !-!encky“' 6’. They observe that

= W= O o (C-nF (GG (0 - oyt (1.4.7)

3 eHM ¥

@ This mean deviatoric stress is also 3/ 2 times a quantity known as the octabedral
. shear stress. The total strain energy listed under (e) was proposed by Baltrami
and Haigh“' 7). It does not prove satisfactory since there is no correlation bea
- tween behavior in pure shear and in pure hydrostatic compression. The con-

. served distortional strain energy refers to the °r:rgy stored in a viscoelastic
E"‘ or plastic material, i.e. over and above what has been dissipated. The theory
E""* of application of this criterion is still not in a satislactory state.

: The important point to note is _{hat no uriversal fracture criterion has

. been established, and that the success of a given fracture hypothesis depends

3 in large measure upon the materjal with which it is associated.

- - In the case of elastomers, in contrast to metals, it is necessary to extend
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the usual concept of brittle and ductile failure. Ductile {racture in metals is

. characterized by irrecoverable distortion and permanent set, analogous to the

behavior of an uncrosslinked polymer which also evinces unlimited, unrecove
: erable flow.

On the other hand crosslinked polymers, the type ordinarily em=
ployed as propellant components, recover completely from straining almost all
the way to fracture even though the strain at failure may reach several hundred

i percent compared to elastic brittle failure in metals of only a few percent. I
the remainder of this section therefore, we shall restrict the discussion to
crosslinked polymers. and shall use the term elastic fracture as the large strain
: analog of small strain fracture customarily referred to as brittle. In either

. case, however, the stress-strain relation is elastic, or potentially viscoelastic,
E with the distinguishing feature being the strain magnitude at failure. With this

-

understanding therefore a propellant material might have a brittle fracture below
the glass temperature but an elastic fracture above it.

It still remains however
to deduce which of the various criteria is appropriate for predicting the fracture.

Inasmuch as no exhaustive investigation «f fracture criteria for elastormers has -
been reported to the authors' knowledge, although Rivlin and Thomas (4.8) have

proposed an important extension of the Griffith fracture criterion which will be

LLSLERAINY 7Y DU )
. Y

discussed later, it would appear that the proper approach is to examine test -

. data in conjunction with certain of the aforementivned criteria, and inquire if ; .
any of thera gjive reasonable correlation. . ]
The following paragraphs therefore will présent a summary and discussion =T

- of some current and proposed tests and their correlation, after a rastatement of -

some of the germane characteristics of elastomers, Before continuing, it is

appropriate to define the terms elastomer and polymer as used in this text.

A polymer is a network of long molecular chains which may or may not

be tied together chemically. An impcrtant characteristic of all long chain struce T

tures is the glasa transition temperature ’I‘8 above which polymers behave rube
- berlike, and below which, glasslike.

" Wnr.w'. L 'y,'r‘h“' ik

If the polymer chains are not tied together
chemically, the structure is termed a plastic~-a brittle plastic belov. T and a
4 rubbery plastic above Tg.

7
i

The extent of the elastic deformation evinced prior
to flow to ruptire in the rubbery plastic is markedly a function of interchain
entanglement and therefore of chain stiffness or structure.

Q00

If on the other hand the polymer chains are tied together chemically,
the structure is termed an elastomer or rubber--a brittle rubber below T_ and

. a rubbery rubber above Tg' The extent of the elastit deformation evinced prior
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to rupture in a rubbery rubber is markedly a function of chain length between
crosslinks, and is not markedly sensitive to chain structure.

Both rubbers and plastics become increasingly viscoelastic as the tempera-
ture is lowered. In general, rubbers have lower glass transition temperatures

than plastics, and so become viscoelastic and then brittle in lower temperature
ranges than plastics.

4.2 Material Characteristics of Amorphous Elastomers

A composite solid propellant is a highly filled rubber. Ballistic missile l

logistics demand that the {iller be oxidatively energetic in order to deliver high )
specific impulse during the combustion processes.

The current science of pro-
pellant chemistry has narrowed the inventory of such useful oxidizers to come

binations cf asmonium perchlorate and alum.num.

v

In this combination, the

rica A St
.
f

aluminum serves to preven: cver-oxidation of the rubber fuel and at the same

\ time, by virtue of its high exothermic heat of combustion, overcomes the dis- -
. :‘ advantages imparted to the exhaust gas by its high molecular weight. '::
F__; Rheological studies have shown that it is .expedient to incorporate the . :'_:
" filler as a trimodally distributed agglomnerate of particles, ranging from one to ) ' :]
3 250 microns in diameter with the mean size occurring at about 30 microns. Single 4 h_,
:'.‘ crystal studies have shcwn that the aluminum-rubber bond in tension is approxi= ) ) ‘ o
- mately 90 psi, and that of the oxidizer rubber about 30 psi. Since the tensile o .

strength of a filied rubber lies in the range 20 to 200 psi at room temperature, it :.;

is seen that the filler-binder interaction contributes an important feature to the ‘ -

mechanical behavior of such composites.. Because of its relatively high bulk K

and shear moduli, the filler may be assumed to be absolutely ri&id. g :__
The binder, according to current standards, is a synthetic rubber, negli= '

gibly crystalline, with a molecular weight between juncture points anywhere

from 40 to 400,000. These juncture points may be branch-points at which a tri- '
or tetra-functional monomer has been incorporated into a condensation polymeri- '
zation systemn; or they may be crosslinks effected, not by vulcanization, but by
mixed condensation.addition polymerization. The mechanical properties of the
binder, without its {iller, are not the same as those of the. pure rubber. The
polymerization process is markedly affected by the presence of the filler.
Needless to say, the mechanical properties of such a composite are a
quite complicated function of the properties of the binder, of the volume fraction,
particle size distribution, and adhesion of the filler. In order to understand the
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fracture mechanics of such a system, it is appropriate to study first the fracture
mechanics of unfilled rubbers, and then study the modifications produced by vare
ious degrees of filler. In carrying out this comparison, it is extremely important
to remember that the filler not only modifies the mechanical properties, but also
the molecular structure of the binder, so that it is necessary to understand how
the mechanical properties of a rubber depend upon molecular structure.

Finally, before proceeding with this study, it is appropriate to ask:
what are the important modifications introduced by the {iller? Experimental
studies on propellants have shown three differences from unfilled rubbers.
First, the tensile properties of filled rubbers are very different from their com-
pression properties. Secondly, yield occurs in a series of steps; it may be neces-
sary to distirguish among several types of yield. For example, it may be impor=
tant, from the ballistic viewpoint, to define yield as the point at which the propel-
lant has becorne porous enough, by virtue of :nechanical strain, to increase its
burning rate beyond a safe value. This critical porous strain may be less than
the strain at which mechanical failure will occur. Thirdly, relaxation of stress
progresses long after the rubber component has relaxed to its rubbery modulus;
this indicates that a reshuffling of the adhesion bonds and positions of filler par-
ticles is a continuing process.

The next sections discuss the elastic fracture of rubbers and unfilled
binders.

- 4.2.1 Unfilled non-viscous elastomers

As the title of this section indicates, the materials with which we are deal-
ing store energy reversibly until fracture. This behavior is associated with very
low or very high rate straining of elastomers. During fracture,energy is released
which can, in principle, be accounted for by the kinetic energy and surface energy
imparted to the new crack. The crack acts as a point of stress concentration but
the local stress far away {from the crack will remain below the yield stress of the
material and thus continue to store energy elastically until the crack propagates
through the material, at which time all the remairing strain energy will be con~
verted into kinetic energy. Cracks per se will not be considered at this point
but some insight into the failure of unfilled elastomers can be gained by considering
the ultimate behavior of uniaxial tensile specimens.

Examples of unfilled elastomers are natural rubber, butyl rubber, styrene-
butadiene rubber (SBR, formerly GRS), and polyurethane rubber. All sach
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rubbers evince large shear deformations prior to yield or cracking, and should
therefore be characterized by a theory which allows for large deformations. The * )
simplifications of small strain theory not withstanding, some progress assuming
large strains is possible for the usval unjaxijal tensile specimen fajlures. Rivlin
(4.9) has shown that the strain energy of a unit volume of undeformed rubber may -

be appropriately expressed as a function of three strain invariants, which, for an
incompressible material, assume the form:

. .- s e v ke e
AR ‘_,'. St )

I,= N+ Ny + Ay (4.2.1a) %

L=ttt ie A_ {4.2.1b) .
I, = NN (4.2.4c) -

where )‘i is the extension ratio of the coordinate acted on by the normal stress ;-
Application of the principle of virtual work leads to the siress-strain relation® in
terms of the true stress &

.= 2IW LW 3 4.2.2
O = o =2[N 3 o1, AT n,]"“‘ ¢ )

where K is, in general, a function of the coordinates, but not of the strain invar-
jants. )

In order to use (4.2.2), it .i: necessary to understand the nature of the strain
energy density function W, and in particular, to procure an analytical representa~
tion which holds as close to rupture as possible. We shall take as our type matex~

ial, for this study, unfilled natural gum rubber vulcanizate, the simple stress-
strain curve for which is x'epx'odx.u:ed‘4 10) ;

ENER

in Figure 4.4. It is characteristic of
natural rubbers that they possess a sharp increase in stress beyond 500% elonga~
tion. Most synthetic rubbers break near this elongation.

An empirical method for rectifying simple tensile data (411) obtained on
incompressible elastomers is based on the following observations. The initial ‘
portion of the stress-strain curve is fairly well re.presented by

o (PSR

A

" Y

c=sl-D=eit (4.2.3)
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*When shear forces as well as normal forces are acting, the st are replaced by
a set of apprcpriate strain tensors. In what follows, (4.2.2) will suffice. "
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which is equivalent to plotting the data versas the true stress &, i.e.
T= E(A-1) (4.2.4)

Note that for iarge extension ratios (4.2.38) approaches the limiting value e mE.
In order to provide for the rapid increase in stress with later portions of the
curve at large strain, {4.2.3) may be modified more or less arbitrarily to

- - A= . .
o= EA}\T'-)\-» E'Q;T-Q et (4.2.5)
which reduces to (4.2.4)fox B = % at small strains,
1

=R __ (4.2.6)

One can use (4. 2.5) in plotting the data (Figure 4.2) as
oX _ A--- 4.2.7
IS =t + pA=% (4.2.7)

where it is observed that the stress in kg/(:rnz is given by

A=t _caie (A=)

o= 7.39—'?'2 ;- 1€ X< G (4. 2.8a)
G = 0.708 -—"—,’E.‘— e°'°°("' g 5 A>é (4. 2.8b)

We proceed to define A= 6 as a yield point and observe that the modulus after

vield is reduced by slightly more than a factor of 40, indicating that the network
resistonce has been drastically lowered. Since modulus is proportional to cross

links per unit volume, we infer that the loss in cross-link concentration arises

from the slippage or tearing of entanglements, and that only the true chemical
crosslinks remain to offer resistance. Support for this inference is deduced
from the observation that the exponential factor now behaves more iike )‘2 than
A , since B has doubled. This means that the load rather than the true stress is
proportional to strain, the proportionality constant now behaving like a spring
constant; lateral effects have suddenly become unimportant; the network loops
now offer little or no resistance.

- X The exponential factor exp B(\- )\'1) is not amenable to quadrature and so
the area under the curve-in Figure 4.4 was evaluatad stepwise by Simpson's Rule

and the resulting strain energy plotted in Figure 4.3. This smooth monotonically

. increasing function of A is nicely rectified by plotting W vs (11-3) as network
2 - -

.
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(4.42) demands, (Fxgure 4.4). Again note the yield at A = 6. Below yield, . )
the strain energy function is closely approximated by

theory

¥

r v
]

W= £(1-3) = 0.883 (1~ 3) (4.2.9)

!’u,l

- =
so that the shear and Young's moduli are approximately 4.76 kg/cmz and 5.28 . .
kg/en’ respectively; this is a somewhat lower value than that obtained from
Figure 4.2, but thn is 30 because in {4.2.8) a higher value of E is needed to

compensate for = -2-. in other words, only the xmtzal portion of the tensile curve
can be represented in the form (4.2.8) with 8 = 7.' and E= 5,28,

4.2.2 Filled non-viscous elastomers

The most striking difference between filled and unfilled elastomers is the
so-called blanching phenomenon or pullaway of the binder from the filler. As .
indicated in the irtroduction, this makes for three observations. First, the pulle

away occurs in steps, undoubtedly depending upon the distribution of adhesion R
bond strengths between oxidizer and binder.

5econd, it does not occur in come
pression.

Third, after pullaway, relaxation not of the network, but of the strain
energy located at the surface of the void spaces, occurs. This is demonstrated ;
by the fact that a typical filled rubber, after three months at constant strain 7
(3099, might relax its modulus from 500 psi to 5 psi. And then, upon complete T
recovery of the applied strain at the end of a second three months, will resume i
its initial modulus minus the contribution that arose from the adhesion to the .
filler. If this cycle is repeated a second time, the modulus will relax and return
to nearly the same value.

Because of this reversible shuffling back and forth of the filler particles, o
it follows that the time rate of change of tle local stress distribution in a filled
rubber must be quite complicat=d and that the rupture criterion may be signifi=
cantly moreé complex than that w!' ch is proposed above for an unfilled rubber.
One can start by neglecting relaxation, i.e., working with short time data. On

this basis then, the curvature of a tensile stress curve is to be ascribed entirely

to pullaway effects without reshuﬁlmg. The modulus decreases because adhesion

. . . - . bonds are broken and because the propellant dilates. This dilation effect is shown

in Figure 4.5 where Poisson's ratio is plotted -ersus axial strain, the local :
:‘:. . _. strains having been carefully ‘measured photographically. Figure 4.6 shows how - - .z
!' . ) the modulus is increased in the region of negative strain or compression. The S
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question arises: what sort of elastic behavior 18 evinced by such a material when

. it is subjected to combined tension and comg . ession?

Effect of orthotropic moduli. A relative.- simple case arises in the pres~
surization of an infinitely long hollow unbonded tube of prop¢'lant, internally
- pressurized, the analysis of which will be pursued here. Since the algebra is

quite involved, only the essentiai features will be sketched.

It is thought that

this type of analysis will become increasingly important as the nature of the pulle
away effect becomes more completely understood.

As a result of internal pressurization, all radial and axial elements cf the
propellant tube are in compression. The hoop elements, however, are in tension .

so that an orthotropic response may occur. Jaeger

(4.43)

shows that for such a

case, where the orthotropic material properties are with respectto cylindrical

cocrdinates, the stress-strain relations are
d.z c”e. -+ C.. G'-* C.‘e.
Oy = C3 € +Cu€pr + (€~ 2Ce)E,

Oy = Cn €y + (€= 26) €, +C 6

By analogy with isotropic theory, we have

Coe =M
Cap = A"'fz’(
- Cs = Avg,

Cu = '\cc"' 2‘

’ Tre= Coa Vre

M T = Caa Vo

) Tn™ Cee ¥

(4.2.10)

(4.2.44)

Since the hoop direction is the only one in tension, C.‘}3 is the cocfficient that one

would measure in triaxial tension so that (C33~Zp.) is indicated by the Lame con~

stant with a double subscript T. Likewise, (Cii-Zp.) is the Lame constant one gets

from triaxial compression, and is designated by the double subscript C. The

coefficient C13 is an interactica coefficient which could be measured in mixed

triaxial compressior tension. i.e., pulling in one direction and squeezing on the

two sides. In the isotropic case, the constants reduce to

Cp=2M=Cpy = C,,=2M = A = K—-%.,u

wheze K is now the hydrostatic bulk modulus in compression.

hand, we have

(4.2.12)

In the problem at
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O, = Cip % + cy S (4.2.43)
Op = cu—+ Cur (4.2.14)
0" = Cy % -+ (c'-zﬂ)g_:. {4.2.15)

where u is the radial displacement.

Substitution of the above relations into the
equation ={ stress equilibrium

do‘?‘ + o'r“‘ c.

ar ¥ =0 {¢.2.46)
yields

& u ! du u

gy Ldu _c:z.;__. - (4.2.17)

Note that, by direct observation, X g< )\

ce {because of the pullaway effect) and
therefore C33/C“< 1.

The solution of (4.2.47) ia given by

uaArk*Bf" {4.2.18)

A
Or = o (c,. +VETh) + -%:;(cu & Ga) (4.2.49)
where k = (C33/C

r = b, where e =-P and O respectively. The result is

&g- a\ak(bxk~rak) (4.2. 20)
v TR (pa—~at™) .
O - 8 al#k(ba\c* ,.zu) (4.2.21)
k=) Ttk ( bxh_ azk)
CuU_ K [(.P.Y‘" (%)l-k] + 'CEB‘L(%')'““"(%)‘-"]
Py "

- @ IE" -] (4.2.22)
a"* [(k-' ‘E’.’.‘) rE®a (ke Sc_-:) bakl
R (e Fé_-;%)(b-k_ a**)

Note that if C,3/C,, >k, the radial displacement is negative. However this
i3 not physically possible since the work done by the internal pressure must al-

ways be positive; hence one should find experimentally that 6‘3/ C“< k. The
most significant difference from tha isotropic case arises in the occurrence of

fractional rather than integral exponent powers of the radial coordinate. The

“)z. The constzats A and B can now be evaluated at r = a, and
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strain concentration factor is defined by the ratio of .‘%L to -‘%L » which leads to

GBI gy

Ke

—Su (_g)“" (4.2.23)

2k (%l*‘(

for a thick-webbed shell. In the isotropic case, where k = £, (4. 2. 23) reduces
to the correct expression ~(—§§'.

The same treatment can be applied to the case-bonded propellant. I will
be necessary in this and many cther situations to solve for the point at which the
hoop atress changes sign. By following this procedure, one can avoid trial and
error techniques. In general, problems of this naiure will best be solved with
the aid of digital computational aids. Before programming, however, it will be
recessary to determine the strain energy function for the propellant in both com-
pression and tension. The theory of {inite elastic deformation of anisotropic

materials has been presented by Green and Zerna“' 14)

so that, in principle,
the pullaway effect can be handled all the way to rupture if the strain encrgy

density function is known. .

4.3 Uniaxial Test Data

Considering the implied necessity for obtaining material property cata for
fracture investigations, such as the strain energy density function j;xst mentioned,
it is appropriate to review some of the current tests commeonly being canducted,
and their applicability to the problem at hand.

4.3.1 3tandard variable-strain rate testing

By far the largest accumulation of data relates to fracture under simple
uniaxial tension. For solid propellant materials these tests have normally been
conducted on standard JANAF specimens (Figure 2.29)at variable strain rates
and temperatures. One common testing machine is tLe Instron tester which will
impose constant crosshead motion through a2 range of speeds from 0.02 to 20
inches per minute, over a temperature range between-400°F and 160°F. The
output of the machine is an automatically recorded force-time trace to fracture
{Figure 4.7) which provides the basic experimental information. Depending upon

. the magnitude of strain to fracture, the data is converted into plcts of nominal
or true stress, i.e. force divided by original or actual cross sectional ares,

versus strain. The accuracy of the latter quantity is frequently open to question
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becausc the elongation, or crossbead separation, is not distributed evenly over.
th2 specimen length and some ''effective length'' must be sclected. It is common
practice to use an effective length of 2.7 inches for the JAMAF specimen. It has
been noted in an earlier section however that Baldwin(z' 17) has had some success
in using a square flat end, bonded zpecimen which reduces the amount of flow
near the grips and hence removes part of the gage length indeterminacy.

The uncertainty in the basic data emphasizes the desirability, arnd near
necessity, of developing local strain indicating devices for low modulus materials.
Several improvements along these lines have been attempted, such 28 using gage
marks near the center of longer specimens, or circle patterns distributed over
the length. While some increase in accuracy has been reported, the Jata serve
also to indicate in many cases a basic nonhomogeneity in strain distribution due
to the filler particles in the propellant.

Neglecting nevertheless these important experimental refinements and
working only with the reduced experimental stress-strain data, one turns next
to the problem of organizing the extensive test information for many temperaturec
and strain rates in useful form. Presuming for the mo st part that maximum
streas, ¢, and strain at maximum stress, &, are the more significant quan=
tities Smith has shown for a wide variety of polymers that a very reasonadle cor-
relation of ultimate tensile properties can be obtained if the data are plotted
against the logarithm of a reduced time parameter (see Section 2.5) a.l.R. where -
R is the constant strain rate at which the test was conducted and apis the Wil-

liams, Landel, Ferry (WLF)“‘ 15) temperature shift factor, (2.5.6)

X . c(T-Ts)

Leq 3¢= L
C A W Cr+ T-T

(4.3.4)
an caa also be interpreted as the ratic of the time to measure some phenomena
at temperature T to the time to measure the same phenomena at the reference
temperature T.. This relation can also be cast in the Tobolsky form (2.5.5).

A set of his typical strain data is shown in Figure 4.8, and similar stress
data in Figure 4.9. Note in the latter case the stress has been normalized by a
temperature ratio because polymer theory predicts a linear increase of retractive
forces with absolute temperature. Both sets of data were normalized as described
in section 2.5 by using the temperature shift ¢ ‘tor, experimentally deduced from
separately shifting (i) strain at ultimate stress data, {ii) maximum stress dats,
and {jii)} modulus data, and finding all three agreed if C‘ = -8.86, C,=101.6
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and Ta = 269°K (2.5.6). That such a convenient and near universal correlation

exists for ultimate propertiess is extremely useful, and among other things, per-
mits one to predict with fair precision the uniaxial tensile fracture behavior over
wide ranges of strain rate and temperature from a limited set of test data.

Figures 2.25-2.27 show some typical data for the tensil> modulus, ultimate
stress, and ultin ite strain of various propellant compositions in order to indicate
the range of properties to be anticipated at different strain rates and tempera~
tures. It should be emphasized however that marked deviations from these data
may be expected for particular compositions of ingredients within the class pre~
scribed.

Before passing on to a consideration of fracture under multi-axial load
conditions, it should be observed tiat the temperature shift correlation is rea=
sonably well founded experimentally but that the limited strain rate capability
of the Instrcn tester is not particularly well suited for verifying the correlation
over wide extremes. This may be noted in Figure 4.8 where the test data at
various temperatures barely overlap. One would feel much more confident if,
for example, the open circle (160°F) data obtained over the 1/RaT range 5to 8
could be extended to lower values by increasing the strain rate, her ce lower
1/Ra.r. at the same 160°F temperature. Bearing in mind however the limitation
of the tester, approximately 20 inches per minute cross head motion maximum,
it is impossible to fulfill this desire without changing the specimen, which would
not be particularly acceptable.

4.3.2 High strain rate testing

The obvious answer is to inquire if higher rate testers would be available.
Several have been developed. One of these is the Allegheny Instrument Company

(4.17)

device which is generally well known. Another is one developed by E. 1.

Du Pont de Nemours and described in a recent paper by Jones (4. 18). Basically
this latter machine, which achieves high loading rates by means of a controlled
explosion of smokeless powder in the head, can strain JANAF specimens up to
approximately 200, 000 inches per minute. While it is premature to generalize,
indications from this and other high speed tester work are that the theoretical
WLF shift factor for ultimate fracture of tensile JANAF specimens is sufficiently

valid for engineering purposes.

.Y

e

-t




W it AT R TR TR R I e e, ST TR T g e
N TN TR S e e R T I O S T T Y TRV

¥

~ Ry
L v e TR

m} YT P {‘wrwv.. Ty

i

"y

s wﬁ Ty
(I

-210-
4.4 Multiaxial Testing

Inasmuch as the uniaxial testing procedurcs for simple JANAF tension
specimens are well known and data reduction techniques widely disscminated,
the subject has been rather shortly dismissed. On the other hand, from a struc-
tural standprint as distinguished from the quality control objective, the important
subject of the fracture behavior of viscoelastic materials subjected to biaxial
and triaxial loadings needs considerable amplification, but suffers from lack of
experimental data. At the present tune, it is proposed to discuss some possible
experiments in this area with particular emphasis upon their suitability for solid
propellant materials and due regard for testing equipment convenience.

4.4.1 Pressurized tensile tests

) Perhaps one of the simplest extensions of the present uniaxial tensile test
using the Instron tester is to enclose the specimen in a leak proof container filled
with air or liguid maintained at an

16‘ arbitrary compressive pressure.

Within the same criticisms of the

basic test with no external pressure,

a triaxial tension-compression

@ -—:0', stress field can be imposed. Sup-
pose that the geometry is as shown
on the sketch. Then the stress and

strain analysis for the central portion S
Tﬂ. of the specimen subjected to the uni-
axial tensile stress gives :

G=0 5 &=-2]1-24k] (4.4.1) ,
06=0,=k0; g=¢§ =.9'é1[~y+(n-w k] (4.4.2)

One would expect therefore an apparent uniaxial modulus for this triaxial field of

| =3

Fa= T ow

(4.4.3)

where, because in the tests as described k is negative corresponding to a com=-

pressive stress, the apparent modulus would be smaller than the uniaxial modulus..
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For small strains it would in principle be possible to deduce the (elastic) value
- of Poisson's ratio.
As in the Iorme.r case, these tests could be conducted at various strain o
rctes and temperatures. .
. P
. °
4.4.2 Pcker chip tests
Another test that may be conducted with relative ease connists of cementing
a thin circular disk of propellant between two parallel end faces of two circular .
steel plates being subjected to tension. The softer disk sandwiched between the - .
harder bars will be restrained, because of its thinness, from its usual contrace [ ]
tion perpendicular to the load and hence generate a triaxial tension stress field,
The elementary analysis for this case may be made by assuming the disk
infinitely thin sach that the ext ernal radius is sufficiently far from the center to
assume the only non-zero displacement, w, is in the axial direction. Under .
these conditions, one is led to deduce for small deformations [
0= 0 Y e (4.4.42)
g=0=7%0; g-g=0 (4. 4. 4b)
- so that the apparent axial modulus becomes ::i:
Ea=E [—(T-—;E;ZTW (4.4.4c) :
i where it may be noted that for propellants, which are characteristically nearly )
incompressible, i.e., ¢/ = x the triaxial tension approaches hydrostatic with a —
consequent infinite apparent axial stiffness. 9o .
A fairly extensive and revealing investigation into the use of this test for ‘
an incompressible rutber has been reported in two papers by Gent and Lind-
l:y“' 19-4. ZG). When one attemnpts to improve the analysis outlined above, the
major difficulty arises in determining the stresses and strains throughout the
disk. Whereas the previous analysis assumes the edges are infinitely far from '.
the center, in the actual test piece there 'will be a local necking of the propellant, B
however slight, as the assembly is subjected to tension. When this effect is .
accounted for the analysis becomes considerably more complicated. For an
incompressible raterial, Gent and Lindley have given an approximation to the
. apparent axial modulus which depends on the thickness, h, of the disk or radius a, ®
e _
o
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E,= E[Hﬂ%’(—%‘l (4.4.5)

where it may be observed that the apparent modulus, as before, becomes infinite )
= as the thickness approaches zero.

x
.
’
’

Furthermore their fracture data, reproduced in Figure 4,10, shows for g
-
the various compositions indicated by the different curves that the axial stress
to cause fracture increases as the disk thickness decreases.

They bhave sug-
gested that the limit for zero thickness is twice the value for large-thickness.

While it is tempting to thus extrapolate the data, it is not unreasovnable to expect
the curve near zero h/a to change slope. Realizing that the breaking stress used
by Gent and Lindley is in reality an averaged stress over the face of disk, it

would be appropriate to obtain an improved appreximation.

Y TETTT X7
i )
P . .
. v

This can actually be
obtained using the principle of minimum complementary energy. The outline of

such a solution, given in Appendix I and not restricted to incompressible ma=

terials, predicts a stress distribution that is a power law in the radius and hyper=

i QL 7
4

bolic in the thickness, and for the limiting situation of zero thickness (infinite
radius) gives the proper limiting value l’r/l’z = 4,/(4~y). Further caiculations

to investigate the utility of this solution in interpreting the experimental failure
data would be desirable,

Eh el 4
e

T
4

Lt

‘m» i

By conducting such tests as reported above, using an Instron tester, the
usual ranges of interest in strain rate and temperature can be covered and the '
possibility of strain rate-temperature shift further explored.

4.4.3 Diametral compression of a disk

3 Fitzgera.ld“' 1) has suggested that the disk type specimen may also be

E used in an alternate manner to examine a mixed tension-compression biaxial
- stress field. If a circular disk of uniform thickness, h, is loaded in diametral
P compression by a load, P, the .
. stresses at the center are of
: . (4. 22)
- opposite sign and equal to

2b

0,(0,0) = o (4.4.6)

. 0, (0,0) = — ey (4.4.7)

Furthermore the diametral extension, 2u(b,0) along the horizontal (y = 0) plane is

LA i UL
e *
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2u(b,0) = -[2-14 9] (4.4.8}

Providing there is not local failure at the point of load application, this specimen
has the advantage that the critical stresses occur at the center and may be easily
observed. Furthermore, measurements of the horizontal extension permit an
indirect <heck on the accuracy of the foregoing formulas. Presumably as long
as the extension stays linear with the applied load, even though the deformations
near the point of application may be large, one would feel justified in using these
stress formulas based upon infinitesimal deformation theory. From the stand«
peint of fracture, Fitzgerald has found“' 21) that the character of failure at the
center changes from tensile to shear depending upon the temperature of the test.
This latter point, of course, emphasizes its potential significance as a sensitive
test for determining a fracture criteria.,

Incidentally, it may be observed in passing that the range of central
stresses which can be imposed, i.e. l‘y/l’x = -3 from (4.4.6) and {4.4.7) above,
could be extended by the use of elliptical instead of circular specimens, although

at some expense in experimental simplicity.

4.4.4 Torsion of rod specimens

Among the various types of mechanical testing, torsion stands as particu~
larly important. There are several reasons for this. First of all, a cylindrical
specimen subjected to a small angle of twist undergoes pure shear; the applied
torque is directly proportional to the measured twist angle per unit length, the
proportionality constant being the shear modulus. Thus the torsion properties
for small strain should be independent of Poisson's ratio.

- As the shear strain is increased, however, new effects enter the picture.
Finite elastic theory predicts a lengthening of the specimen known as the Poynting
effect.

It may be deduced that

R =1 K (an (4.4.9)

7
where A\ = -—i— is the axial extension ratio
o
a,b are the inner, outer radius of the cylinder respectively

k is the angle of twist per unit length

=T = = g = - T ~— Yy reT———
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One obtains the preceding relation by application of finite elastic theory to the
strain transformation defined by
- ko

T"'.v_-io’

= o6+kz
T = ANZ

where the bars refer to the deformed coordinates of material points. The unde-
termined constant which enters into the theory because of the incompressibility
condition is determined by setting the integral of the axial stress over the end
face equal to zero. Figure 4.44 shows a plot of ls-i vs k?’. taken from recent
ta(" 23) on polyurethane propellant. Note the excellent straight line correla-
tion in agreement with theory. The theoretical value of the siope is 1/8 inz/radz.
whereas the measured value turns out to be 4/7 mz/radz. Considering the as~
sumptions made in deriving (4. 4. 9) the agreement is excellent. The most impore-
tant ohservation that can be deduced from this is that the elastic properties of
the binder predominate at least up to three percent shear strain. A similar type
of verification is provided by the recent data of Bergen, Messersmith and Rivlin
on filled rubben“‘ 2‘).

On the other hand, indications are the elongation will decrease as the
twist is increased further. This is to be expected since the pullaway of the binder
from the {iller will tend to convert the local shear into local simple tension around
the filler particles. What effect this will have upon fracture in torsion is not
known. It is suspected that the fracture criterion will not be as simple for a
filled elastomer as an unfilled one, therefore torsion should provide an excellsnt
way to check out the applicability of the distortion strain enexgy criterion. Fure
thermore, torsion under superimposed hydrostatic pressure can then be used to
check out the importance of anisotropy.

4.4.5 Hollow tube tests

Providing a satisfactory strain measurement is ava.ilable', the behavior of
an internally pressurized thin or thick walled cylinder up to and including burst
would yield fracture irformation under biaxial tension, for zero axial stress, or.
with the added triaxiality depending upon the nature of a finite longitudinal stress.
This type of specimen has been used with mixed success at the U. S. Naval Ord-

nance Test Station“‘ z3) employing an oil for the pressurization. The major

b it chm m w2 B Awee eE e e key et b e 8
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difficulties aside from such obvious ones as preventing leakage, are to obtain an

accurate strain history and to measure the applied time varying pressure. These
tests can be used upon either thin or thick walled cylinders, and with or without
being enclosed in a case. In some cases it will be more convenient to check out
a thin case-bonded design using externally mounted wire strain gages and infere
ring the tube, or even star point, strains by working backward using the theoreti-
cal solution. For most purposes however, the resultant case to grain stiffness id
so high that accuracy is poor.

The main advantage of such a test is its reasonably close similarity to an
actual operational configuration. If the pressuru-time rise is appropriately regue
lated, the test could be useful in predicting frasture under a varying and typical
strain rate history.

It should also be mentioned that it is possible to extend the rod torsion
tests mentioned in the preceding section to hollow cylinders, preferably thin
walled because of the relative accuracy with which the theoretical solution is
knovn: Another test variation using the hollow tube is the possibility of using
this geometry to examine the effect of orthotropy of multi-layered cylinders.
Some preliminary analysis along these lines was presented by Pister jn
Section 3.3. 3. The results of his continuing program, including some
planned experiments, should furnish evidence for or against the desirability of
this test geometry for orthotropic propellant media studies.

4.4.6 Specimens with initial cracks

Multiaxial testing can also be extended to include the bjaxial stress field
o which axists near the point of &

1 1 1 t crack in a medium which has already
begun to fracture. We shall consider
the state of stress in several initially
cracked configurations and their as-
sociated stress fields, and criteria
~—i 2b '.. for crack propagation.

Thin sheets subjected to

stretching: A common configuration
for metal sheet specimens not used
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extensively for propellants is the tensile strip containing a crack perpendicular to ! :-‘
:::;: the load. This test in conjunction with Griffith fracture theory“' 26) is used to - T
-i:f- determine critical crack length, i.e., to find what size crack or flaw a given ma« ' :‘::
_ terial of specified thickness will sustain under a specified external stress before __
- it becomes unstable and propagates catastrcphically. For catastrophic propagation .
P of a brittle fracture Griffith deduced that, for a crack of length 2b, the applied

Utress % muat exceed

. AET
i Oer. = \J-,-ﬂ—,-g {4.4.10)

E where T is the chara-tenstzc surface tension of the matena.l pounds per inch. .
For glass T~10" pounds per inch.

;',‘- Propellant materials are however not usually thought of as brittle matere
ials except in the glassy regions where (4.4.40) might of course be expected to

2 ' apply. In 1953, Rivlin and Thomau“‘ 8) proposed an extension of the Griffith o
~ hypothesis for the rupture of rubber and found it was possible to correlate the ) -
?‘“" tearing, providing T was interpreted merely as a "'characteristic energy'' and ’
“ not necessarily the surface tension. For the gum rubbers examined T~ 100 inch

. pounds per square inch. In the process of establishing this correlation, Rivlin
and Thomas, and their subsequent collaborators, were able to get by with rather

_ gross approximations of the stress fields. It is appropriate at this point, par- -
ticularly as fracture criteria will be discussed in a later section, to state some )
of the characteristic features of the biaxial stress state near the point of a crack. ‘ g
The classic problem in this field was solved in 4943 by Ingli-“' 27) who *
calculated the stresses in the vicinity of an elliptical hole in an infinite sheet. -
Since then many investigators have worked upon related problems. Rather re~ -
cently a somewhat general analysis for the geometry shown in the preceding
figure has been given by Ang and Williams“' 28) for an orthotropic sheet subjected L
to combined stretching and bending, wherein the sheet is assumed infinitely wide
with respect to the initial crack length 2b. These results show that the elastic

stress distribution along the line of crack prolongation and assuming small de-
formations is “

k3
; 0 (x,0) = O (x,00~ ¥ et

. TN E [x V- ] (4.4.40)
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and near the crack point, x= b+ e,

Cute,0) = Oy(g0) = -—:'9;; ‘e (4.4.12)

so that (i) the normal stresses at the crack point are équa.l leading to a twoe
dimensional hydrostatic tension and (ii) infinite stress magnitudes exist at the

{4.29) shows that the circumferential variation of

crack point. Further analysis
stress around the crack is such that the maxamum stress occurs not along the
direction of propagation but +60 degrees off to either side. The octahedral
stress variation also peaks off to the side +70 degrees. Such deductions show
the complexity of the stress distribution near a crack and suggest that a more
refined stress analysis be incorporated when assessing the fracture of visco-
elastic materials. :

There are, however, three factors which should be emphasized. First,
is the elastic analysis valid for viscoelastic materials? It will be recalled that
if all the boundary conditions on a linearly viscoelastic material are prescribed
in terms of stress, as in this particular case, then the viscoelastic stress dis-
tribution is identical with the elastic one. Second, the mathematically infinite
stress at the crack point is physically inadmissible. On the other hand, one can
in the average sense hypothesize the existence of a small region of constant finite

stress with a characteristic radial ex-

tent § which would give a stress dis-

ﬁ Y tribution such as shown in the sketch.
“f‘s‘:-.:::n In a metal specimen, such a region
AN may be associated with the area of

plastic flow; the eguivalent association

for viscoelastic materials might be in

STEARSS

terms of an agglomeration or Lundle

of polymer chains, and from the data
th(4. 30-4. 31)

at low strain
2

of Greensmi

$

DISTANCE FROM THE rates seems to be of order 40°
cRACK POINT

inch.
Third, if the strains are so large, will
not the assumptions of infinitesimal theory be violated? The answer is yes, but
the mathematical solution of the finite deformation problem is nearly intractable.

Some exploratory work of Blatz“' 32) however indicates that the stress singularity
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will probably not be removed, and hence one would expect errors in magnitude .
but not in the principle. . =

Finally, the centrally cracked geometry is not the only one which can be
investigated experimentaily. One obvious alternative is the externally cracked
specimen and another is a one-sided crack geometry. Some analysis for the Je
(4.33) while the latter is complicated by a lack of geometrical N
symmetry. No experimental data for viscoelastic materials is known for the

I O LI A -

former is possible
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EXTERMNALLY CRACKED SINGLE TIDRD CRACK

former, aithough Rivlin and Thomal“'s) have used the latter extensively in their -
experiments. N

&
.

B

Thin sheets subjected to bending. Arncther loading of considerable interest
is in an initially cracked specimen subjected to bending. While the same centrally

cracked geometry as before could be used, and analyzed using the Ang-Williams )
(4. 28)

solution taking into account some important amplifications by Knowles and
, it is more customary and experimentally more convenient to use a -

slit specimen (see insert) or trouser-leg specimen. From the analysis standpoint,
P

9 ..‘vf-!ij,..n_.,.
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the experimental specimen should be rea«
sonably thick so that the applied loading

produces only bending stresses near the
crack point. When the specimen becomes
P thin, and particuarly when stretched to
large deformations as done by Rivlin and Thomas(4’8) (see insert) a complicated
bending-stretching interaction problem
results which is beyond classical treat-
(4. 28). On the other hand, the i
strain energy of deformation is mainly

ments

confined to stretching of the trouser legs
with a high but localized strain energy at
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the crack point. It is this feature, as incorporated by Rivlin and Thomas, which

accounts for the reasonably good correlation of tearing threshhold and character=
istic energy.

On the other hand, it will no doubt be necessary to conduct certain bending
and extensional tests designed to permit the maximum use of available analytical
solutions to investigate the general applicability of a ''characteristic energy"'
criterion, T. Specifically, as will be discussed later, there may be an important
general connection which can be established between T and, say, the distortion
strain energy.

Threshold criteria. As indicated earlier the first criterion for the elastic

fracture of rubbery materijals resulted from an extension of the Griffith brittle
fracture theory“' 26) by Rivlin and ‘I'homas“’ 8). The Griffith theory for thin
flat sheets of thickness h, results from considering the change in strain energy
in a specimen when a crack of initial 'ength 2b, which is presumed small com«
pared to any planar length in the extends a small amount 8(2b) exposing
a small increment of newly formed surface with surface tension, T. Assuming
that this specimen is initially stretched by a stress €y¢ and then clamped at its
ends in this position, the strain energy in the sheet will be redvced as the crack
grows as the energy in the new crack surfaces increases. In the limit when the
specimen parts, all the strain energy will have been transferred into surface
energy. Analytically this changein potestial energy V' becomes ®

vl T 2bTolh _
V= ——2% 2(2YTHR (4.4.13)

where the first term is the strain energy and the second is the werk overcome
by the surface forces on both sides of the newly formed crack. At the equilib=
rium position of the crack just before catastrophic crack propagation, these two
contributicns balance, or the chenge in V', 8V/8(2b), is zero.

ov’ _ woltznh
9(2b) zE

—2TR =0 (4.4.14)

which implies that the critical stress at equilibrium for a crack of length 2b is

Q4EYT .
O - O:._,.= T(2b) ("4- is)

*5ee Timoshenko and Goodier {4.22), Tor a brief description of the essential
{features of the theory.
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which relation was stated earlier (4.4.20). The energy in the specimen at this
stress, by substituting into (4.4.43) is

~Ver = 2bRT (4. 4.16)
from which denoting the cross section area of the specimen by A = 2bh the surface '
tension can be found as :
Ver:
T=-"‘—3-A';-—l (4.4.47)

if the energy changes ar evaluated or measured at a fixed length, i.e. clamped
ends. :
Rivlin and Thomu“' 8) followed by various collaborations of Greensmith
and Thomas“’ 30-34, 4.35-38) have proceeded to examine the application of a
similar criterion for rubber. They find that one does seem to exist as measured
upon various geometries and loading condili ns but T should be viewed as a
characteristic energy loss not necessarily restricted to surface tension. The
fact that T is relatively constant, at a fixed strain rate, for various geometries

is encouraging. If one approximates their data analytically, it is found that“‘ 31)

2
3
T exi0® (ét—-eut) at 90°c (4.4.18) ,
and
= s (248 )% . 4.4.4
<= aoxic®( o at 25% (4.4.19)

where t is the time to failure which reflects the strain-rate sensitivity, and T is
in ergs per em®. (107 ergs:/(:mz k60 in-lbs/inz). . ,
They further observe that T can be approximated by the relat'ion“‘ 31) '

v=wW,d (4. 4. 20)

‘where W d is approximately the critical strain energy d.ensityzfor failure as de=
termined in an initially uncracked tensile specimen, W, e, /(2E), and d is

the apparent size of the flaw or the diameter of the crack or razor blade cut at
the crack point in the unloaded position. And {finally, Greensmith“' 31) presents

some data which suggests that W; may be approximated at 25°C by
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o f 100 + . L
w: = 500 % {0 (—Lﬂ-.‘—) : (4.4.21) o

30 that dividing (4. 4.49) by (4. 4.21), there results that

d== 0.03 cm = 0.0} in. (4.4. 22)

which is of the order of the measuraments also observed by Braden and
Ge n‘(4. 39-40)

energy by measuring the energy density required to fail a tensile specimen and

. In principle then one may obtzin the characteristic tearing

reduce it by the diameter of the flaw. -
- It is possible to arrive at their results for a flat sheet by an alternate
interpretation in terms of the characteristic average stress distance, §, introe

- duced ecarliey. M the s, and ty stress (4.4.412) are averaged locally in the L
- vicinity of the crack point, one can deduce S
- ) 2 B
- , =P (4.4.23) -
{ ]

so that the factor (2b/ 5)2 is essentially a stress concentration factor. Compute

the distortion strain energy taking account of the streas {ield at the crack

TV

i

tx:cya.ndcglomt'md

LT Wy = 0’: (0,00 (er) = T/ (6 (4.4.29) ___

so that using (4. 4.23) and assuming incompressibility, the critical strain snergy

" density at fzilure in this specimen becomes

e

z .

3 e 2b

3 =2 52 4.4,25 ‘ot
We=—2¢ 3 ( ) o

——

E But using the classic Griffith interpretation (4.4.45) in the form —

. £ Y Y -

™= (e

% one finds =

:‘. w - *

. T=3Wae {4.4.26)

! which of course is the same form as (4.4. Z0) but associates a characteristic —

distance within the material with failure.

It is also possiblz to show the connection with local radius of curvature

Canc i 'y
..
P

(4.41) by working with the general solution for the crack field. By integrating

Eaa ot bt S A= 2 N U T R & e M T RTINSy
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the elastic stress field to find the displacements, one can compute in particular.
the displacements of the crack boundary fcr the deformed, i.e. loaded, specimen. )
For the internally cracked specimen the shape of the crack or hole is elliptical ‘
(4.

2 and the radius of curvature at the sharp point of the crack, R, can be aa~ )
sociatzd with the applied stress as

G. t 3 » ‘-"
r=4b(Z) 4.4.27) :
and hence using (4. 4.23) )

=\ B H-'
- 2r=d= § (25 (4. 4. 28} s

s0 that 12 comparison with (4. 4. 26) .

’ . T=Iw a (&) (4.4.29)

= which would also agree with (4. 4. 20) if the local value of averaged stress at the -
crack approached values of twice the tensile modulus®*. °
prowny R

P"“ . It should be emphasgized that these latter associations have been made

~ after utilizing the assumptions of infinitesimal elastic deformations for sheet

o specimens srhereas the work of Rivlin et al. includes large strain measurements

- . onvarious geornetries. Nevertheless it is encouraging to gee that the effects

predicted by more sophisticated stress analysis are not inconsistent with these
other experiments and analysis.

Crack propagation. It is possible to make some headway in estimating - :
the velocity of crack propagation in a viscoelastic material after the fracture

" threshhold has been exceeded. The primary new effect is the delay timme in the
fracture introduced by the rate sensitivity of the material.

? . proposed in one of the previous progress reports“"’)

A simple model was -

» and is included in Appendix
X . A simple Voigt model and a limiting strain criterion for failure was as=~ . .
- sumed, and any rate effect on the ultimate strain at failure was supressed. By
X using the important fact that the elastic and viscoelastic stress distributions are
’::'. _ ‘" identical, and the assumption of Voigt behavior, the viscoelastic deformations

*  “could be comnputed, When the local average strain at the crack over the length §

. .o 'f’i‘his type of assumption has been invoked by H. Neuber, lheory of Notch
Stresses, in estimating the maximum stress at a crack point in metals.
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was exceeded the crack would elongate by an amount §, the stress field would
also translate by an amount §, but the new strain increments would add to those
storea while the first element § was breaking. The velocity of propagation was
then estimated as v ® 5/t _ where t.Ri is the time for the i-th element to rupture.
The result estimates the initial velocity as

- t g /e, VEE
Vi =gy e (4. 4. 30)

where g * is the ultimate strain and Ev the tensilc modulus and 7 the relaxation time

of the Voigt model. From McCullcugh's preliminary test data“' 42)

s it was
possible to deduce a value for 6§ which turned out to be 10'3 inch, not in unreason=-
able agreement with the 10'z inch static value deduced from the CGreensmith ex~
periments.

Subsequent growth of the crack in terms of the distance s from ths crack

point, was found to be

S - w O:IEV < * 4‘ [3

T = layE Tes < $T<< 1 (4.4. 34)
and

. . ey .

T=7F ® {4.4.32)

which latter value becomes suspect for large times because the velocity of propa-
gation is unbounded in contrast to reality, probably because the inertia terms
have been omitted from the equations of motion for this viscoelastic material.
Braden and Gent“‘ 39-40) have measured crack growth in sheet specimens in an
ozone atmosphere and find velocit.es of one-tenth inch per minaute at low applied
stresses, consistent with McCullough's measurements, but also find the velocity
is nearly independent of stress level at low stresses, whereas (4. 4. 34) predicts
a reascnably strong stress dependence.

As a final word it is possible to improve .= above results using essen-
tially a general viscoelastic model based upca an approximation to the creep come
pliance (4.14.3). It will be found that the strains along the crack in au incom-

pressible material are
*
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&,(,05t) =50y -v0,] = Lloy- o)

= m[nﬁf“_ﬂ??ﬁfﬁ Dy +0-0p){* & Km}] :

(4.4.33)

and a similar expression for e (x, 0;t) using the Appendix. The procedure outlined
can be repeated. The time when Ey reaches a critical value g°can be computed
frcm the above; the stress and strain analysis in § steps can be repeated, although
it 3s immediat.ly evident that the computations become somewhat more involved,
even if account is taken of the primary glassy response at the crack point. Nevere
theless (4. 4.35) has the important advantage of approximately the entire spectrun

¥

of relaxation times of the material, and furthermore, as rate sensitivity on

)

failure criteria will be discussed in the {inal section, one can compute the strain

.

TTTEGYY

) T e k)
TR TR D) .
N . . C
. . ,
. S T .

rate at any time. This can be carried out for the biaxial strain field if desired.
One can now use this knowledge of stress, stress rate, strain and strain rate
distribution in time and space in conjunction with failure criteria, including rate
effects, to investigate the mechanics of viscoelastic crack propagation with rea. .
sonable precision--if not simplicityl

4.5 Selection of the Failure Criterion

In accordance with the remarks introducing this chapter, it will be assumed
that the elastic type of fracture is characteristic of cross-linked propellants, and
therefore, that yield and fracture occur almost simultaneously. It should be re-
called that in contrast to briitle fracture of many metals. propellants may sustain

. considerable strain before failure, and therefore in terms of strain at break

. rubbers may be characterized by several hundred percent, metals by a few tenths
o of a per cent.

A briztle material must be able to fail in at least two ways~~either by dila=-
tation or by distortion. For example, a sample subjected to hydrostatic compres-

sion will suddenly collapse its volume when the critical pressure is reached; or in

Ll i aied e e e s

hydrostatic tension which is not an easy stress [ield to g ~nerate, it will suddenly

Y
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tear. Gent and Lindley“' 20) have measured this triaxial yield stress for ;rul-
canized rubbers and shown it to be around 30 psi. Presumably, the failure
stress in compression will be much higher. Bridgman“' 43) shows that one
should expect a minimum of several hundred thousand psi yield stress. These
facts show quite clearly that the distortion strain energy alone or, indeed, any
failure criterion which involves shear forces, is not adequate to explain hydro=-
static failure, since hydrostétic forces generate no shear strains. Similarly,
a sample may be caused te fail in pure shear, applied in torsion. No measure-
ments of the torsile yield stress appear to have been reported for polymeric
materials, but the existence of a torsile yield stress m.ans that any fajlure
criterion bi:sed on dilatation alone is inadequate.

It folows therefore, in the most general case, that each material mast be
characterized by at least two failure criteria, and that there must exist conditions
under which both types of failure may occur simultaneously. Also it should not
be expected, in general, that the two criteria are independent. For example,
the critical skear stress in torsion may be a funciion of the amount of superime
posed Lydrostatic pressure or hvdrostatic tension. In the follow‘ing section, a
geometric description of these concepts will be prescnted.

4.5.14 Geometry cf normal yield stress or yield strain space

Because of the many criteria for fracture, it is convenient to have a
method which permits the analyst to visualize their region of possible application.
Inasmuch as the three principal stresses are orthogonal and participate in all
stress theories of failure, one way of presenting the criteria is in terms of prin-
cipal stress space where the magnitudes of o0 @, 2rd oy are measured along
the orthogonal axes to form octants. A similar spproach could be adopted for
strains. The rupture of an uniaxial tensile specimen at the stress r§ w.mxld
therefore correspond to a point on the o3 axis at the particular value o3 Other
combined loadings would in a similar manner correspond to other points on 2
rupture sucrface F(‘i' o5 ¢r3) = constant, where the object of failure testing
would be to perform experiments under all different combinations of combined
stresses in order to trace out the failure surface in all octants. Presumably
there would ve many surfaces, each corresponding to a given strain rate for

which the surface was obtained. Then, having obtained such surfaces experi-

r’,.,'.(‘m, L aaacanders 41
k

PP,



e Py gy e P R s o
- — R A A A S
vy riegeE W g E Yy WWR RTE STE WTECME - AN -

R Ty rEeE N @Y YR SR Y ’ 7 -
R P

] oy L h

- N

R ot U S TR SR S S S AR Nl

Y eniina) e, : -

AR e Lo LT L B
o .
ks -

P'b:;cﬁ

£l

Lol

E.-:

pL -226-
Eo mentally, the analyst would proceed to check out various criteria in the different -
",;-’. . octants and the one lying closest to the test surface would be the desired failure :
3 criterion.
- Strain energy criteria. Inasmuch as critical values of strain energy, -
: either in terms of stress or strain, are among the most prominent hypotheses,

we shall proceed to develop the geometrical interpretation, assuming for necese ,

sary simplicity at this time that the material is linearly elastic and that infinitesi=

mal deformation theory applies. Furthermore it is always possible to choose

coordinates in which no shears act along three orthocgonal axes and so only prine
E ciple (normal) stresses and strains will be treated. In practice, most mechanjcal

testing is applied to specimens whose geometry guarantees that the applied normal

o stresses are indeed principal stresses. In this sense, the stress-strain law may .

= be written:

0= (r-3u)B+2s€ 3 i=1,2,3 ; D=CrErtE (4.5.4) -

s

The mean hydrostatic stress is given by:

o= Es_*:';_*_‘l’z= Kd (4.5.2)

The total strain energy is given by:

0 s ;

=506, =59 + Zu(F-3D,) (4.5.3) N

where \gz €,€,+ € €3+ ER E, and where the double subscript indicates -

o summation. The dilatational strain energy is computed from the volume change by: -

n . Y " -

F . W= -2-0"0- = .z_.\g‘ (4.5.4) : -

and thus the distortional strain energy is given by: i

2 2

) Wy -S4 (8- 39,) (4.5.5) : g

553 If the strains are replaced by stresses, Ecuaations (4.5.2) and (4. 5. 3) may be i -
?« rewritten as:

- ot {4.5.6) o "

3 Y™ 2 "

F | -
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306,

w‘:“- = 24

{4.5.7)
where 0= 0,0,+ 0,5+ 0,0

Reasonable critical values (denoted by asterisks) m.y be anticipated at
this time for both forms of the strain energy function. For example, in simple
tension, Equation (4.5.7) reduces to:

W, - .5(_ (4.5.8)

e
where “r is the simple tensile strength at yield. Inspection of the various simple
tensile data on propellants immediately reveals that the distortion strain energy
will probably not exceed 40 psi. For many propellants, this ie 2 generous figure,
as is well realized by anyone who has flexed dogbone tensile specimens to fracture
in his tangers. Continuum rubbers, on the other hand, may well reach 4000 psi
at failure. Thus, the effects of the filler particles are markedly evident in this

drastic reduction of the distortion strain energy.
Recent unpublished triaxial test data obtained on tablet-shaped specimens
present some evidence as to the magnitude of the dilatational strain energy for
propellants. In the case of polyurethane propellant, the triaxial stress rises to
160 psi before rupture at 0.7 percent strain. These figures correspond to a bulk
modulus of 14000 psi, much lower than that observed in hydrostatic compression;
the associated dilatational strain energy is only 35 psi,

the data of Gent and Lindley“‘ 20) indicate a dilatational strain energy of 30 psi.

For continuum rubbers,

Thus, the filler particles do seem to reduce markedly this latter guantity.
Imagine now a rubbery linear elastic material characterized by the follow

ing four parameters:

K = 250000 psi

'y = 150 psi

ws : < gl s .
dil. = 25 psi in tension, infinite in compression

waist = 5 psa, independent of the value of hydrostatic stress,

The question arises: what ranges of triaxial stress or triaxial strain will such a
material sustain without yield. Let us first look at the geometry in the stress
space defined by the three orthogonal directions of normal stress. The dilatational

criterion may be expressed as:
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aYzk WS = 30% 2 .040.4 0 (4.5.9)

where o* is the value of the hydrostatic tensile stress at which yield or failure
will occur. Equation {4.5.9) represents a plane surface in normal stress space,
located at a distance V3 o* from the origin, and whose normal i# oriented at an
angle of 54° 44' to each of the principal axes (cos £ =\Ti3= ). Equation (4.5.9)
thus expresses the sine qua non for applicaticn of the distortion ciiterion. For
the given material, ¢* & 3500 psi.

The distortion criterion may be expressed as:

202 + Op = 0,0; — 03 0y~ 05,0,
2'“%;.“; O, + 03 + Uy 3: 2V~ Vs (4.5.10)

2 -
> (004 (G- 0+ (G m’i% (4.5.11)

6

The form (4.5.41) is convenient because it allows one to introduce the values of
the maximum shear stresses which are given by:

7= Es_:zﬁ , L3e K (4.5.12)
It follows that:
z,u’N‘:mz -—2—-':: ;—g—(‘t,'-rz:-o ) (4.5.13)

where 7T, is the octahedral shear stress which operates in the particular planes
whose normal is directed at 54° 44' to the principal axis. The name arises be=-_
cause that part of the plane which lies completely in the octant of pure tension

forms one face of an octahedron. Comparison of (4.5.11}) and (4.5.13) shows
that

=

T, = -g_q? = 31.6 pui. + fOF the given material.  (4.5.44)

Since simple tensile strength is 2 more familiar quantity than octahedral shear
strength, the geometry of the yield surface will be described by the former param-
eter (& 67 psi) coupled with the hydrostatic tensile strength. The surface repre-

sented by (4.5.11) “is best visualized after making the following transformation:
<

P=+3"0C {4.5.45a) -
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e pr= o+ of+0p (4.5.45b)
Toing = ____LO’;;" (4.5.45c¢)

Substitution yields:

rsrg—:a', =Y3 Ta = 54.8 psi (4.5.16)
These equations state that the distortion yield surface is a right circular cylinder
whose radius is 84.6 percent of the simple tensile strength, and whose axis (the
hydrostatic vector) is normal to dilatational yield surface. The length of this
cylinder is determined by Equation (4.5.45a) with & = ¢* £ 3500 psi, and at this
point, the cylinder is capped by the dilatational yield plane. The intersection of
the cylinder with this plane defines a circle on which failure occurs simultaneocusly
by dilatation and distortion. Any stress field which lies inside the cylinder but
outside the dilatational yield plane will produce failure by dilatation. Any stress
field which lies outside the cylinder but inside the dilatational yield plane will
produce failure by distortion. Finally, any stress {ield which lies both inside
the cylinder and the dilatational plane will be sustained by an elastic body. All
these statements are depicted in Figure (4.12), which shows a two-dimensional
carpet of the yield surface. Because of the form of Equations (4.5.4) and (4.5.5.),
the geometry of the yield surface is exactly the same in normal strain space.

If, in addition to the critical value of the hydrostatic tension, it were
possible to assign a similar value for hydsostatic compression, then the cylinder
would be capped by two dilatational yield surfaces, one in octant 1, in which all
stresses are positive or tensile, the other in octant VI, in which all stresses

are negative or compressive. The failure mode and stress quality in all occants
may be denoted as follows: .
number of positive

Octant L s, & possible failure modes stresses
1 + + distortion and/or ten- 3
I + - SonRatien 2
i + - + distortion 2
v + - - distortion  §
v - + + distortion 2
Vi - + - distortion i
v - - + distortion 1
vin - - - dilatation and/or come 0

pressive dilatation

-

gk i

I
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By virtue of equivalence of the three principal axes, it is noted that there are ) '
four categories of octants characterized by the number of stresses of the same '

sign. Thus octants II, IIl and V are similar, and octants IV, VI, and VIl are . .

similar. This means that, for an isotropic material, only four octants need to -
be tested. If in addition, it is known that the compressive properties are the

same as the tensile properties, then only 2 octants need be tested. On the other °
hand if the material is anisotropic, or if anisotropy is induced by virtue of

straining, then it will be necessary to check six octants for an orthtropic matere

ial, and eight for a completely aeolotropic material.

It must be noted here, in passing, that stress-induced anisotropy pree

sents a real problem in the case of filled rubbers. Consider, for example, an /

interpally pressurized hollow cylinder with the radial axis in compression and
the tangential axis in tension.

Because of the dewetting of the binder in tension

- its modulus and Poisson's ratio in the tangential direction will differ from those

in the radial direction. Thus, orthotropic behavior is indicated and at least six

octants mus: be checked,

Other failure criteria. Suppose now that the given material fails by

the Tresca condition, which is assume@ when the maximum principal stress dif-

ference reaches a critical value, Note that this reduces the dependence of the

failure criterion from three stresses in the energy case to two, namely, the
largest and the smallest.

A logical check on such a theory is to determine .
whether the failure criterion depends on the value of the intermediate stress.

Taking 5> ’j’ o, . the maximum stress difference or maximum shear

stress is given by -g;?.'i::z!: (4.5.12), A logical extension of this theory was pro- *

posed by Mohr, who suggested that

%F BB o 4 (239 (4.5.47) - ]

Proceeding as before, it is easily shown that the condition (4.5.12) Jefines six

E, planes which intersect to form a hexagonal prism, which is precisely inscribed
- in the strain energy cylinder.

In the case of Mohr's condition, the six planes
become six curved surfaces, the elements of which are generators of non~circular
cylinders, 1t is readily observed that the mathematical analysis connected with

such conditions leads to insurmountable difficulties. Suffice it to say that the

Hencky condition is usually an adequate approximation, even when physics dictates
that the Tresca or Mohr condition represents reality.

Similar surfaces develop
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in normal strain space, only the values of the parameters are different.
Finally, let us suppose that the given material f2ils when the maximum
principal stress or maximum principal strain reaches a critical value. In this
case, the failure criterion in stress space is expressed as:

- O.< %< < o, (i ik, permuted randomly) (4.5.18)

This condition defines the position of three orthogonal planes which intersect the
principal stress axes at Sr and intersect each other to form a cube. 1° there is
no critical condition for compression, the faces of the cube will extend to infinity
in the octants 1I through VII. A critical value of the simple compressive stress
will serve to define three other planes which will intersect in octant VIII to render
the cube finite. In this case the center of the cube will have coordinates

e e Ty O
0, =0;=0) = —2—5‘

. where L is negative and larger in magnitude than s....
g Again, the same geometry but different values of the parameters will obtain in
o the normal strain space.

It is clear that if the hydrostatic yield surface intersects the hydrostatic
vector at a distance greater than v3 0. there is no possibility of dilatatjonal
failure, whereas, if #<¢ e then the intersection of the hydrostatic yield surface

with the cube defines the line element on which both types of failure may occur
simultaneously.

Coupled criteria. An interesting situation occurs when the two failure

criteria are coupled. Suppose, for example, that the critical value of the dis=
tortion strain energy is some function of the mean hydrostatic pressure. Since
the point in normal stress space corresponding to the mean hydrostatic pressure

lies on the hydrostatic vector, the coupled criterion suggests that the radius of

.- the circle which intersects the cylindrical distortion energy surface is a function
of the position of this poirt. Thus the general failure surface based on coupled
criteria will no longer be a cylinder but will still be a figure of revolution with

_. varying circular section and with figure axis still on the hydrostatic vector. This
E may be stated analytically as:

- Vi = $0) (4.5.49)

It is readily observed that by allowing the radius of the figure to increase

as the position on the figure axis approaches the origin, the figure can be made
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to approach a cuboid. Thus, by the simple expedient of coupling the failure cri-
teria, the condition of failurs by maximum principal stress can be approximated.

The situation may be summarized as follows. The Huber-Hencky octa-

hedral shear stress criterion defines one limiting case of failure which is a right

circular cylinder capped by the dilatational plane. The maximum principal stress

criterion defines another limiting surface which is a cube, possibly intersected
by the dilatational plane. The actual surface for any given material probably lies
somewhere between these extremes. The problem is to define the extent of coup-
ling.

For pure elastic materjals, it makes no difference whether the failure
surface is cast in normal stress or normal strain space, as long as the elastic
laws are known right out to failure, even if non-linear. Obviously, the values of
the yield parameters in strain space will differ {rom those in stress space. And
since one should be interested in introconverting one set of data to the other,

Poisson's ratio looms as a very important parameter. Thus the need exists for
accurate experimental determination of this quantity under all conditions.

This may be seen as follows. First invert (4.5.1) as:

o.~(~-F8)o=2u¢, , or (4.5. 20a)

o--2Y o — 2ue, ’ or {4.5. 20b)
LT e i

UL_ -y(qi.‘.q‘)-gge_. (4.5. ZOc)

For the case €, >&;>¢, . (4.5.20b) shows that >8> Therefore the

maximum principal strain failure criterion (€; <€,) is associated with, in itress
space, the criterion:

O~ 7(0;+0,) € Ey (4.5.204)
This is the equation of a plane, which intersects the principal axes at

, - EGw ~EGy -EGy
% 05 O =155 ? v r

s in octant IV, Because of the equivalence

of the principal stresses, there are two other congruent planes which intersect

in octants VI and VII. The three planes intersect at a point which lies op the

hydrostatic vector at a distance o, i_?,“, {rom the origin. Thus the yield sur-

face in normal stress space associated with the maximum principal strain criter~
ion is a trigonal pyramid {Figure 4.13), whose faces extend out to negative infinity.
The slopes and intercepts of these faces depend strongly on the value of o .
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4.5.2 Mechanical procurement of failure data.

Aside from the obvious point of experimentally verifying that a given proe
pellant under consideration is linearly viscoelastic in the first place, failure
analysis indicates that testing need be carrien out in sufficieat octants to enable
one to decide whether the material is anisotropic or not. In addition, testing
must also be carried out at various points within an octant in order to pin down
the position of the failure surface within the given octant. Since, in gencral,
this can involve a prohibitively large number of tests, it is expedient to reduce
this number by a symmetry argument. Assuming that the propellant material is
isotropic, it follows that a given deformation field is insensitive to any ordering
of the principal axes which border on the given octant. This means, for example,
that interchange of the x and y axes, in any test in which these axes are the prin-
cipal axes of the specimen, produces no effect upon the mechanical parameters
that characterize the stress-strain field. The same argument holds even if
anisotropy is induced as a result of applied strain. It only fails when the material
is anisotropic to start with. It follows that only one-eighth of any octant bounded
by two of the three coordinate axes and a third axis collinear with the hydrostatic
vector need define the region within which testing can be carrjed out. This can
be seen very nicely by referring to Figures 4.14 - 4.23. The set of four testg-~
biaxial tension, hydrostatic tension, parallel-plate tension, and simple tensiur
(Figures 4.14 - 4.17)--form a sequence which defines the trace of the yjeld su =
face in the plane defined by one of the coordinate axes and the hydrostatic vector.
In order to complete the definition of the position of the yield surface, it is merely
necessary to determine the trace in the plane bounded by any two of the coordinate
axes, for example, the same plane in whkich the biaxial test is depicted in Figure
4.14. And {inally, an additional check may be provided by tests at some intermed-
iate points. It is believed that the sequence of tests ocutlined in Figures 4,14 -
4.17 is sufficient to pin down the yield surface within the extent of variation that
ordinarily accompanies failure testing in any one octant.

The remainder of the sequence of Figures 4 18 - 4.23 shows the mapping
of stress vectors produced by tests in other octants. The sequence was chogen
(cf below) from the total possiible number of combinations of positive/negative/and
zero stress components; but w3 numbered in a fashion better suited to the discus-
sion of mapping within otant L.

+ + + triaxial-hydrostatic tension ~ octantl

+ + ¢+ triaxial-parallel plate tension-octant 1
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biaxial-planes 111, 11V, 111
torsion-pure shear- octants I, VII, III, VI
uniaxial-tension-along each positive axis
torsion stretch - planes If 111, 11 VI, III VI, I VII, IIIVIL, V: V1
torsion compression - octants IV, V, VI
identify~coordinate rrigin
uniaxial-compression-along each negative axis
biaxial-compression-planes V VIlI, VIVIIi, VI VIl
triaxial-hydrostatic compression - octant VIl

triaxial-parallel plate compression - octant VIII

The tests chosen to generate the various mappings of the stress vector are those

in common use today. The introduction of other types is primarily a question of
experimental ingenuity.

4.5.3 Unfilled non-viscous elastomers-large strain effects,

In Section 4.2.1, the character of the stress-strain curve in simple tension (
was discussed for natural rubber vulcanizate.

Apart from pointing out that the :

strain at rupture is large, nothing was said abcut the failure criterion. On the

other hand, nothing was said uzbout the effect of large strains upon the nature of

the fxilure criterion in 4.5. 2.

1t is important to tie these two sections together

in order to evaluate realistically the failure of unfilled elastomers, and then
filled elastomers, or propellants.

Let us recall that many unfilled elastomers or continuum rubbers are

generally well characterized by incompressibility, and a strain erergy function

of the forr: (4.2.9).
form (4. 2.

these expressions.

2).

Associated with this function is a stress-strain law of the

Let us now calculate the various failure criteria with the zid of

Denote alternate values by 2n asterisk and order the sube

scripts in the fashion A > A > xk. ore.> &£.>8.

From {4. 2. 2) it follows that the ultimate true stress is given by:

— "' -
T = (A4 R) (4.5. 24)

where K is determined from the condition

7\.. X..)\.kzi
[

(4.5.22)
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The maximum of the three values among ?2‘, ?;', ?k is appropriate for a criterion
based on maximum principal stress. If maximum principal stress difference is

chosen, one must write:

26, = Tw 0" = M (NI 201 (4.-.¢3)
Note that this may be numerically grezter or lesser than the maximum principal
stress depending whether ?: is positive or negative.

The maximum principal strain difference derives from (4.5.23) after
division by twice the shear modulus, using the fact that the Murnaghan {or finite)

strain is given by

€ = _’S..{_‘. (4.5.24)
s TEr G-N
. GO NN (4.5. 25)
a4 2M <

This latter quantity is greater than the maximum principal strain for

°
A > |+\’|+ N
The expression for the mean deviatori¢c stress may be simplified by

introduzing (4.2.1a,b,c) to yield:

To= FVEI- 00+ (57T )+ (T-ar) = mi1i-31,  (4.5.26)

Note that this quantity is greater than W, = -‘;—(I."3) for I,> 2Yi+I, =1}

The mean deviatoric strain derives {rom (4.5. 26} after division by twice the

shear modulus. In particular,
the formulas for uniaxial and homogeneous biaxial stress fields are also tabulated.

All these results are summarized in Table 4.4,
Some comments regarding Table 4.1 are in order. First of all, note

that for the uniaxial stress field all the yield criteria,with the exception of the
maximum principal strain and distortion strain energy, are proportional to the

-1

same factor (Xz - X 7). A similar situation holds for the equal biaxial tension

“%). In both stress fields the ultimate

stresses are simply equal to the ultimate strain times twice the shear modulus.
Second, if the strains are large, 21l of the criteria are proportional to kz. One
might suspect therefore that the problem of defining an ultimate criteria for an

incompressible elastomer is straightforward: measure X at yield {or fracture)
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imum principal (normal) strain, as suggested earlier in this section.

in any kind of stress field, and as long as A ¥3 the error made in failing to dis-
tinguish among them is of the order of 5 ~ 40%. If, however, the fracture strain

is small, of the order of 20 to 30 percent as it may be in actual rocket motors,

the criteria will depend upon the stress state. The similarity of the strain pro=

portionality factor for many of the criteria implies, however, that it may be suie
ficient when designing experiments to contemplate testing the hypothesis in only
three of the original seven of Table 4.4, namely (i) mean deviatoric stress

(stress distortion), (ii) distortion strain energy (strain distortion). and (iii) max-

TABLE 4.1
Uniaxial Equal General
Yield Criterion Stress Field | Stress Ficld| Stress Field
1| maximum principal strain A—1 A-t A-1
2| maximum strain difference =(R-%) '.? -t _%_(;",‘ -
3| mean deviatoric strain ‘ =+ (A= %) SR 4{TF53;
4 maximum principal stress b =) | o~ (N-13) P
5] maximum stress ditference ‘ 2 (AF— 1) i w4 (R~ 4x) (R -X)
6 | mean deviatoric stress ax (N- 2 i A (A= MVIFIET,
|
7| distortion strain energy ‘ Z(Rez-3) | LN | F@eD
1

. = )\‘!4 i

As an illustration of how one might predict the ultimate values of the yield
stresses and strains in equal bijaxial tension and pure shear from uniaxial ultimate
strain data represented by A*, consider the following calsulation based upon a
maximum distortion strain energy criterion.

From equations (4.2.1a), (4.2.2) and (4. 2.9), we have

(4. 2. 1a)
(4.2. 2)

{4.2.9)
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where 2* is known from experiment. Now for an equal biaxial stress field, using .
- a subscript b, the first invariant is '_' -
1= 28+ (4.5.27) e
: whereupon equac.~g the strain energies using (4. 2.9) and the respective values of
l‘. fing '

22 +-'1‘-;= NG
.

dicting biaxial failure (large strzin) in a rubber when the ultimate uniaxial strain

A®

E;i:' ' Oze root i+ obviously . L
Ab“m‘ L

- which corresponds to biaxial compression and is extraneovs, The other root is

T 1

- A= l__,i\_v - r(—"'/-ﬂ'* 2/n8 {4.5.28)

s For large \*, we have: — A* /T . ‘which is a useful rule of thumb for pre- -

o 8 P

is known. Similarly, the associated stress ratic can be calculated as ?b/?uni.%'

On the other hand, for small strains such that the maximum value cf the strain

- energy is srpail epough so that A may be approximated by 1 +€, then it follows
- . * ’ - - P
that e.o < €*%*/2, and %y ® O niaxial at {racture. . .
For the second case, pure shear generated in a material by a2pplying th \
- extension field L
£ © ' -t
3 . A= Ag ; Ay=1 3 Ay= NAg {4.5.29)
leads to T
e AN oy A2y o s (N e 2 -
w = z("' 2+ Ay =4 = 5 (N 35S 3) (4.5. 30}
For large \
- 4
A= NS (4.5.34)
o_ L
—g?— = 2T (4.5.32)
i A® — FXJ 1
whereas if the strains are small
€y NS
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T 2 {4.5.34)

Returning to specific consideration of a particular unfilled elastomer,
consider the fracture chzracteristics of gum rubber. The ,coperties of the
simple tensile curve at yield and at rupture are summarized in Table 4.2 along
with some predicted and ineasured values obtained for other stress distributions.
In connection with these properties, a few comments <an be made.

The extension ratio at yield is taken to be 6 on the basis of the discontine
uity in slope in the curve of Figure 4..". The associated &, W and 64 are tabu-
lated. For large strains, it is necessary to adapt a definition of the mean devia-
toric strair based on finite elastic theory. It is convenient to work with Murnae-
ghan's definition of strain:

—‘2()\"‘\) = €

P (4.5.35) -
3 so that .
‘ _‘2_.(;.- 3})=# {4.5. 36) )
: TABLE 4.2 -
m Fracture Properties of an Unfilled Gum Rubber Vulcanizate g
i (s =3.76 kg/cmz. E=5.28 kg/cmz. 1 kg/c:m2 = 14,22 psi)
: ) Table 1 Homogeneous | Heterogeneous
A PropertyjRef. Line|Failure Mode|Simple Tension|Biaxial Tension|Triaxial Tension |
1 A 1 yield 6.00 24.30 | “6.82 6.00 5
- 4 12.0 7.58 | 12.C 4. 85 -
ﬁ Wd 7 29.9 29.9 69.2 29.9
3 L 6 12.0 7.58 { 12.0 4,8%
' ey 3 \ 17.9 17.9 | 44.9 17.9
(. Y 4 fracture 7.65 - - - ) . . i
Fﬁ v 1 32.0 - |32.0 5.84 ’
Wd 7 . 62.4 62.4 - -

o 6 ~ 32.0 - 20 - .

; €3 3 29.2 - - -
4 Tencrgy criteric~ -
d deviatoric str :f criterion
3
3
3 -
3

= - A M} iR P Al R a et e b o o ]
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}iow define the strain deviators and mean deviatoric strain by: I
e = €~ % (4.5.37)
e =V3/7 (e2+ef+e}) = L1}~ 31,) (4.5.38)

after some algebraic manipulation. This is the last yield parameter talulated.

Of the five chosen, most likely candidates for the yield criterion are
v, LA and \, as mentioned earlier. To date, the data necessary to place these
quantities on a firm experimental basis have not been procured. In the mean-
while, some predictions will be made for biaxial and triaxial tension. Compari=
son is established with the only available multiaxial data (4.20)

In the first column, under the heading of biaxial tension, it is assumed
that rupture occurs always at a given value of the strain energy, approximately
30 psi. Notice that it takes less biaxial stress, and of course, less biaxial ntrain
to effect yield and presumably rupture under this assumption. If, on the othar
hand, the mean deviatoric stress is chosen for the yield criterion (second column),
then the sample in biaxial tensicn fails at the same stress level as in simple
tension, but at a much higher strain enexrgy level. The calculations are carried
out with the aid of (4.2.2).

The case of triaxial tension introduces some new features into the picture.
In the first place, a truly incompressible material cannot deform under triaxial
tension unless at least one lateral dimension is allowed to strain. This cana be
accemplished for example by bonding a cylindrical sample between two rigid steel
plates. In this case, incompressibility of the specimen is preserved by necking

of the sample. Gent and L’mdley“' 20)

subjected such poker-chip specimens to
tension and found that the stress-strain curve is linear up to a point at which the
sample suddenly develops an internal void; they term this the triaxial yield psint.
Theay show, to a good approximation, that the average applied stress level

s' (kg/cmz) at which the void occurs is giver by {4.4.5)

[ / ar — w [ ht .
s'=ee [+ 5] = rlst 3] (4.

Ut

.

U
O
Qe

where e' is the strain level at yield
is the radius of the tablet {cm)
is the thickness of the tablet {cm)

is the maximum hydrostatic pressure acting on the yield
surface just prior to yield (kg/cm?)
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For samples characterized by h/a = 0.3, they measured the yield stress fora .
number of rubbers and found experimentally

e g e P 0
. 0 »

S'= 0.50 + 0.55 & = 0.59 Py {4.5. 40)

. by (4.5.39), so that

- Pw= 0.85+ 094 E (4.5.41)

Insertion of the tensile modulus of 5. 28 into (4.5.41) yields the tabulated

value of 5.84 kg/c:mz for the indirectly measuted triaxial stress on the yield
surface just prior to yield.

It is possible to calculate how the high triaxial stress originates. Gent

and Lindley assume that a tiny microscopic void is present to start with at the
center of the disk.

They assume further that the void is stretched radially like

a spherical cavity, and they compute the strer P;__’ as the point at which the
cavity becomes infinitely large.

This treatment can be modified for two reasons.
First, when the cavity has grown large, the radially symmetric stress distribu-
tion will become distorted. Moreover, from the start the cavity is not being
elongated equally in all taree directions. Actually; it may be more like exteasion

in the direction normal to the flat specimen with 2ero displacement in the two

transverse directions. Since such a displacement {ield is impossible for a cavity

in an incompressible medium, however, it may be assume d that the cavity is a

small cylinder, lying with its axis pefpendicular to the pull direction, and being °

stretched radially with its axial length held fixed. This will be closer to reality

than the case of the spherical cavity. The solution of this problem is a ciassical '

case in finite elastic theory“' 14) the details of which need not concern us here.

Suffice it to point out that the radial stress in thz medium around the cavity is

gi-en by
- ST . DA B ;
m j’“’(lx) Ny (4.5.42) r
where the bar over the stress symbol indicates true stress and

. . . . v e
X is the radial extension ratio = —,:{ LS R L Y

a is the radius of the undeformed cavity.

Far away from the cavity, A ~» 4 and the stress approaches P;r’

N
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Likewise, the tangential stress at the surface of the cavity is given by
Gy = AL - -3
(&)= %~ 2 (4.5.44)

which, for A>3, behaves exactly like simple tension; this checks the facts be-
cause the suriace of the cylinder is assumed to stretch tangentially, but not
axially. On this basis, we choose the yield value for l‘ to be that in simple
tension, namely 6.00. Substitution intc (4.5.43) yields for P'm a value of

4.85 kg/cmZ (tabulated under the heading & at yield), in excellent agreement
with the measured value. Furthermore, it is to be expected that the measured
value will be higher since it is 2 measured break rather than yield.

The first strain invariant under the radial stretching of the cylinder is

. given by

L= Ap+1+-le _ (4.5.45)
L]

so that using (4. 2. 9)

. w‘-l‘i(;\’a+x+%,-. -3)= 0.883(34.7=29.9  (4.5.46)

Thus the strain energy remains constant as in simple tension. With admittedly
only fragmentary evidence it appears that it may not be a2 poor assumption to take
wd as the yield criterion. In this particular case, the criterion siates that this

particular gum rubber vulcanizate cannot sustain more than 30 kg/cmz or 425

’ in-lbs/in3 of strain energy density without yielding. It is suggested, however,

that similar experiments to those of Gent and Lindley in both tension and com-
pression be expedited to provide the data needed to define the yield criterion.

lllustrative example: On the basis of the suggestion made in the previous

section, the strain energy criterion will be tentatively adopted in order to demon-
strate the use of a failure criterion. In the strict sense of the word, finite elastic
thzory should be used, but since not many design engineers have familiarized
themselves with the intricacies of this treatment, an analysis based on infinitesi-
mal theory will first be presented. We consider the classical case of pressuri-
zation of an infinitely long hollow bonded cylinder in an elastic case. Since the

nomenclature from here on is familiar, interjections will be sparse. Superscript
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bar refers to properties of the metal case. Using (4.2.9) in the form

m:%u[(%_)*. Udy . (Uy] (4.5.47)

with p as the internal pressure, one finds upon the appropriate substitution that
at the inner surface
3 2 —-24)2
w. =P (=29 @/plo-2 + 30+ zzv)
46h (14 ¢ -2v+ (@/)3 (-] (4.5.48)

where ¢ ="—;‘[l-(3‘27Vs] is the effective case rigidity.
For an infinitely stiff case, for example, and typical large web fractions,

Prae. = 30VW, : {4.5.49)

which upon using Wd = (n/Z)(11-3) from Table 4.2, gives a maximum internal
allowable pressure of 170 psi. Figure (4.24) shows how Wd ~aries with Poisson's
ratio for the particular case when ¢= 0.004, a/b = 0.25 and p = 1000 psi. Note
that Wd increases very rapidly as ¥ falls below % The need for such a large
strain energy will in part be eased by relaxation effects in the propellant. But
a very important reason that results in these high values lies in the error made
by assuming small strain theory out to rupture. The error made is akin to ase
suming that the initial slope of the tensile curve remains constant to rupture.
Thus the value of 909 psi is not to be treated as universal, particularly when
large strains are involved. On the other hand, calculations of this sort based
on small strain theory do become more meaningful at low temperatures. There
the stress-strain curve does become linear, while the ratio of p to i increases,
as does the relative case rigidity effect.

Because it is extremely impor:ant to be able to apply the strain energy
criterion to practical cases, the finite elastic analysis of the infinirly lorg
internally pressurized cylinder is carried out in Appendix 4.3 in order to show
the type of error which may occur when using small strain theory. The analysis
is an extension of the results that were presented for the cavity, and in order to
keep it fairly simple, it is necessary to assume incompressibility. The analysis
can be carried out for a compressible material with a bit more difficulty, but for
preseni propellant materials, a representative strain energy density function is
not available.

The result given for the assume d incompressible material is

' A
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¥eé

W= 2T@M™) vo + & @76)?) (4.5.50)
T . (4.5.51)
“- ¢

which is the large strain analog to (4.5.48). For small case rigidities,

P = 23§ | (4.5.52)

and it is easily seen by comparing (4.5.49) and (4.5.52) that the energy increases
quadratically with pressure in small strain theory, but for large strains ap-
proaches a linear asymptote in pressure.

Thus this illustrative calculation demonstrates that if the grain design is
such to permit large strains in the propellant, much lower demands will be placed
upon the allowable strain energy than were indicated by, for example, the 900 psi
figure obtained by extrapolating the small strain theory.

4.5.4 Filled ron-viscous elastomers

In returning now to the practical problem of rocket grain analysis, it is
unfortunate that so little can be said as to how far the conjectures of the previous
section can be e »d. It is clear that fracture prediction will not be nearly
as simple for higi © .uted elastomers or propellants, since the materials are
compressible and may yield at strains as low as 20 percent (A = 1. 20) where as
can be seen from Table 4.1 the criteria depend upon the stress state. Until more

experimental data becomes available, it will be necessary to rely upon 2 mixture

‘* of continuum analysis and engineering judgment.

Possible fracture criteria: It has been suggested that in the case of

unfilled elastomers, the distortiocn strain energy adequately represents the onset
of fracture or yield. In the case of filled elastomers, two factors complicate

the situation; one deals with the cutting of the polymer chains on the sharp edges

" of the filler engendered by the high local stresses around the particles, the other

is the generation of voids as the binder is pulled away from the filler. Simple
modifications to the strain energy function to account for these factors can be
proposed as a ;oint of departure for future work.

The first modification deals with the cutting of polymer chains. This

inference is borne out by constant strain test data (i) as strain is increased, time

TR
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to rupture decreases, (ii) at a given strain, the modulus decreases with time.
Thus, {rom stress relaxation studies at various strain levels, it is possible to
correlate the modulus with some function of time and strain level and also
temperature. The strain energy criterion now becomes:

w;._‘}a..“(t, A, TI[T,-3] (4.5.53)

Secondly, the void volume must be accounted for since the strain energy
is defined per unit volume of unstrained material. If § is the void fraction en=
gendered by pullaway at a given A, then (4.5.53) becomes

w‘-.:—;-,u(t,.\,T)[I.—B][I—B(A)] {4.5.54)

where W(1 is now measured on the sample including voids. Measurements of
void volumes can be done microscopically on thin {ilms.

Until more definitive experimental data becomes available no attempt will
be made to present an example of typical calculations using actual propellant
material properties., It will be necessary to assume that the behavior of filled
elastomers is sufficiently interpretable by urfilled elastomer analysis to permit
stress and strength aralysis calculations in propellant grains, and to rely upon

engineering judgment in assessing the results and their pertinence to the design
problem.

4.6 Cumulative Damage Theory

In any discussion of failure theory for viscoelastic materials, it is neces«
sary to show the correlation between experimental data accumulated at constant
strain rates, and actual test and environmental conditions wherein the strain rate
may change slowly, rapidly or variably during the time under consideration. In
other words one may pass from one failure surface to another as the strain rate )
changes. Pending the determination of more precise procedures, it has been
proposed that one may use a curnulative damage concept similar to that used in
metal fatigue analysis, in order to account for the amount or percentage of re-

sistance to failure used up as the strain rate takes on various values during the
loading history.

4.6.1 Review of the Miner Law Lo T

By way of review, it may be recalled that Miner (5. 44) investigated the
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use of a cumulative damage criterion in aluminum, where the basic concept was
simply to add together the relative percentages of damage at each stress level
(based on total number of cycles to damage at each stress level) until a hundred

(4.45) have extended this concept to other

metals and loading conditions in a more general (non-linear) way.

percent damage was attained. Others

Consider for example, a specific illustration where the usual fatigue
criteria for metals of N cycles to failure at a constant strecs ¢* (Figure 4.25)
is inappropriate. Such a situation often occurs when the loading spectrum is
not a constant stress. Hence while one may expect one million cycles before
fajlure at say 50,000 psi stress, suppose the applied stress is halved to 25,000
psi after only a half million cycles. The natural question then arises - how many
more cycles will the specimen withstand before failure? The usual approach has
been to consider the problem from the standpoint of 2 cumulative damage. In
the foregoing example one would say half the '‘life'!, say % NSO, 000’ had been
used up when the stress was reduced. The specimen would then be expected to
withstand half the life, i.e. %I‘ZS 000* 2t the reduced stress. The total life
for this particular assumed spectrum would therefore be -2- (N50 000 + NZS 000)
The general formulation for a spectrum of M loadings 5. {ic1, 2, 3....M)is

- :., ! (4.6.4)

where the life L = Z. N Ni is the number of cycles at the stress .. and NR

L <
is the number of cycles to rupture at the stress T In the simple example :
chosen, a linear cumulative damage law was assumed; hence n = 4,

4.6.2 Cumulative damapge concept for rate-sensitive media.

Based upon the preceding concept, i't is proposed to inquire whether or
not some similar law might be pastulated for polymers, whose time dependence
analogously to cycles is associated with strain rate. Smith has found a correla-
tion between ultimate strain and strain rate, with tempcrature as a parameter
(Figure 4. 26), fcr specimens tested in uniaxial tension at a constant strain rate.
For most practical applications the stran rate varies during a test, particularly
if the applied load or pressure is changing. It would therefore be desirable to
be able to associate the failure of specimens subjected to a varying strain rate
to that at constant rate for which data, e.g. a Smith curve, has been obtained.

Suppose now that constant temperature conditions are assumed for
simplicity, and write
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2 t'! " 1 . Lol -
izut ( Tw, = with T= §|‘t; (4.6.2}

where t, and tg; are the time the specimen is held at the strain rate éi and the
time to faiiure at éi respectively. T is the total time to rupture fcr the spec-
trum of strain rates € i(i =1, 2, 3....M). Passing now to an integral form of
the linear cumulative failure law, '

. g .

S.St—:% =1 (4.6.3)
from which T is to be determined for a specified spectrum t{€) and Smith curve
tpl€)

As a practical matter, it is often inconvenient to work with the times
themselves. Actually, given

€= e(x,1) (4.6.4)
{rom an analytical viscoelastic strain analysis, then by differentiation
€=¢&(x;,1) (4.6.5)

or inverting

Tt="T(x€) (4.6.6)

alternate forms are possible. For the constant strain rate failure data (Figure
4, 26), GR =€tg, so that
€. (&
= -!—r: 2 (4.6.7)
where an analytical representation of Figure 4.29, tg = tR(é). is required if
numerical integration is to be avoided. The alternate scheme in (4.6,3) is to
replace dt by (3t/8¢)3€ and work completely in the rate space.
As an example to illustrate the mechanics of applying the postulate,
assurne,to s- aplify the calcylations,that the actual strain response of the par-

ticular geon. “vy under study is simple creep {(Figure 4.27), viz.

€=e (i~ e‘i') (4.6.8)
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where €, is the initial strain. From (4.6.8) however the strain rate, by differ«
entiatio:: following (4.6.5), is

é=-§—’-e‘§' - é,e"% (4.6.9)

where éo is the initial strain rate. Now by {4.6.5) one has

& .
t= T !m.\-;.;-) {4.6.10)
and
at T . (4.6.11)

T e g
€

Turning now to the Smith curve, but replotting the data (Figure 4.28) in
the form "R = tR(é) where the ultimate strains €R are indicated by hashmarks
on the curve, one proceeds to curve fit th: data. Ffor illustrative purposcs it
is sufficient to approximate the actual Smith curve by the dashed line

%N (4.6.12)

tTa 3
This form incidentally may be recognized as approximating the actual failure
data by a constant rather than rate dependent ultimate strain -- in this case
eﬁ = 0.2.
With the assumed viscoelastic analysis yielding (4.6.10) and (4. b. 44),
and with an approximate failure threshhold given by (4.6.12), the cumulative

damage pustulaticn gives simply

&) &) - &
=\ 3% ge = __E_____~-_'t‘l
1= &_T.(e) Se de S A de = E:-.E . {4.6.13}

[N €
and hence

€% . -

—=é&-€m=¢g,(1-e %) (4.6.14)
so that failure would be anticipated when the initial strain rate & =€,/ duced
by the amount e&/-c . For a T ., the characteristic relaxation . . say 1

second and ef( £ 0.2, failure .hould occur when the initial strain rate is reduced
by 0.2 in/in/sec.

The life is then found to be proportional to the characteristic relaxation

time, viz.
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T =[] t4.6.43)

While certain liberties have been taken in approximma ting the failure dats
in order to demonstrate the means of carrying through the estimate of failure
time, the steps are believed to affect the results in degree, not in principle.
Indeed, given an actual viscoelastic strain analysis, the f.ai!.ure hypothesis could
be'tested by numerically integrating (4. 6. 3] using the actual Smith type data for
the particular material involved.

There are, however, fundamental points still to be resolved; first, the
form of the cumulative damage criterion, and second, its pertinence to combinzd,
rather than solely uniaxial tensile, strain fields. With regard to the first, one
might postulate an average value of t(€)/tp(€) over the strain rate range &, to &
equaling unity. Also S. R. Valluri has suggested as an alternative, a cumulative
energy correlation based upon integrations of 9 Bt(-:.- ez). inasmuch as he observes
the Smith data straightens out well on log-log paper when €€ is plotted versus tp-

While it is too early to make definitive statements regarding the application
of cumulative damage concepts to elastomers, certain initial experiments have
not disproved its applicability. L. D. Stimpson kas performed one set of pre.

liminary unpublished tests using polyurethane tensile specimens at the Jet Proe

AR

pulsion Laboratory in the following way. “uapose two different samples are
strained to failure at constant strain rate, ~ue at 2 higher rate than the other
{see inserts).

7

A,

Lawwnr RATE = R,

< -

MHIGHER RATE = Ry

v

e or o




it ud
l

A
- v il

s 55’”{"‘

L

M A

"'m."‘“’“‘.r' Chtg

~249-

Now suppose instead that the first sample had been strained on the Instron testing
machine at its rate, Rg. only part way and then strained the remainder of the way
at the higher rate, Rz. as follows.

[}
AA.

——————
[}
]
A, !

! —

j—e—— B, et s AE;——-——. [
Lowege RATE HIGHER RATER

Linear accumulation based on strains then would be

A€, 3T
—?-4» Cratis 1 (4.6.146)
whereas based on energy = Stde = areas under curves would give
gy gy
ode ode
DA LA = {4.6.47)

A, Ay T (& + ™
(Code S ode _
In order to examine the extent of correlation on either of these two bases, several
samples have b-en run at various strain-rates and some have been run with mid-
path changes in strain-rate. Figure 4.29 is a typical run in which three different
strain-rates were used.

In spite of the few tests made with noticeable scatter in the results and
certain shortcomings in the technique of changing rate, the results show that
accumulation based on either strain or 2nergy appears feasible. It is felt that
there will be more means for determining the best basis nf accumulation at
strain-rates higher than feasible on Instron equipment. Runs at lower tempera-
tures and moderate rates on an Instron may also produce a similar result. Cer-
tainly many more runs need to be made in order to account for the statistical
variation in propellant specimens.

Table 4.3 presents the results from some of the preliminary tests show-
ing the values obtained upon accumulation based on strain and energy. A value

of unity represents an accurate cumulative result, whereas spreads of values
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;i - are due, in part, to sample variation. A slight bias above unity seems to exist -
. and has been found to be even larger in the latest runs which suggests non-linear - -
k. _: accumulation may be more.accurate. Roughly speaking, the initial sanple vare :’—:
- iations are at most about + 10% whereas the cumulative spreads are about +20%. - <

The actual standard deviations are shown and about dot.tle in the curmulative

process. This increase in spread is expected and corresponds with tha* found L
in metal fatigue tests.

In order to make Table 4.3 rnore understandable, consider the first

accumulation run, no. 1878. Preliminary tests made separately at 74% strain/ T

min and at 7,4% strain/min all the way to failure resulted in mean values for
strain to break of 64% and 41%, respectively. In run no.1878 a specimen was

strained at the first rate until it had reached 32% elongation or half its potential

strain. Then it was continued at the second {lower) rate until break which was

an additional 24.5% elongation (based on original length).
mulation based on strain,

Performing the accu~

32% 24.5 %
= L1
can t Taiw = (4.6.18)

which appears under the total accumulation column. The energy accumulation

was performed in a similar way with 53% of the potential energy occurring during )

the first strain-rate and 49% during the second (based on total energies at the

respective constant rates from previous tests taken all the way to break). These

energy percentages are tabulated immediately below the strain-rates in the table.
In another separate series of unpublished tests, McCullough

of The Thiokol Chemical Corp. has essentially repeated the experiment using

a polyisobutylene-~acrylic acid propellant. His degree of correlation has also

been encouraging although not conclusive, He obtained 15 to 20 percent deviation

when predicting mixed rate results from constant rate data, with the standard
deviation being sumewhat smaller for a strain rather than energy correlation.
Should subsequent experiments establish that some sort of cumulative
damage hypothesis has quantitative merit in simple examples, it would then be
appropriate to attempt requirements in the form of non-linear accumulation,

varjable temperature situations, and combined stress or strain fields.
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TABLE 4.3. CUMULATIVE DAMAGE .
Run No.  Strain Rates (in/in/min) Total Accumulation Standard Deviatiozz "
% Accumulated at each S, R. Strain Energy Energy Initial L
. (Energy Basis) Basis Dasis Basis Deta o
- ist 2nd 3rd 4th
1878 .14 .074
53 49 1.10 1.02
4879 .074 .74
46 51 .97 .97 .
1880 .74 .074 ! -
54 36 .88 .87 :
1884 074 .74
43 85 1.38 1.28 3> 0.14 0.07
1882 .74 .074
20 66 .84 .86 ——
1883 074 .74 -
14 83 .99 .97
1884 .74 .074
19 7 .97 .96
495% .037 .37 =
41 64 4.14 2.05
- 1956 .037 .37
42 68 1.14 1.10
4957 .37 3.7 S
53 30 .79 .83 o
1958 .37 3.7 -
44 72 i.4 1.24 r 0.18 0.08
4959 .037 3.7
19 105 1.24 1.13
1960 .037 3.7 i —
13 64 .78 .77 J .
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TABLE 4.3 CUMULATIVE DAMAGE (continued) - y
Run No. Strain Rate (in/in/min) Total Accumulation Standard Deviations
% Accumulated at each S.R. Strain Energy Energy Initial
{Energy Basis) Basis Basis Dacis Daca . -
3 4st 2nd  3rd  4th
1 1964 .037 .37 3.7
. 14 30 70 1.20 1.14
o 1962 .037 .37 3.7 _—
iﬁ 13 34 54 1.02 .98
3 1963 037 .37 3.7 0.11 0.08
28 50 34 1.09 1.42 - o
1964 .037 .37 3.7 -
44 32 27 .97 1.03 :
B ——
L .
3 2093 .0074 .074 .74 -
- 19 «? 54 42 )
2 2094 .0074 .074 .74 o
g._ 14 30 67 1.08 . o
'i 2095 .0074 .074 .74 -
23 48 5¢ 1.22
- 2096 .0074 .074 .74 - )
- 17 48 63 1.18 -
2097 .0074 .074 .74 7.4 > 0-47 0.07 .
i‘:ﬁ 5 8 19 87 1.49 R
- 2098 .0074 .074 .74 7.4
1 3 7 18 104 1.29
;! 2099 .0074 .074 .74 1.4
- 1 6 24 8¢ 1.09 ,
fe~ 2100 .0074 .07¢ .74 1.4 D-
e 8 9 - 19 77 1.143 J
' -
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FIG.4.12 F£IL-SAFE 5" RFACE ~ASED ON
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APPENDICES

1. Stress Analysis of a Thin Clamped Disk
II. Crack Propagation in Viscoelastic Media
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APPENDIX I
Stress Analysis of a Thin Clamped Disk

In the course of analyzing failure characteristics of propellant specimens,
it was indicated that one could test under essentially hydrostatic tension conditions
by cementing a thin disk, or poker chip, of the material between two rigid (stzel)
supports and exerting tension in a direction perpendicular to the faces. Under such
loading, the center of the specimen would be subjected to a three-dimensional
tensile stress. The elementary analysis of the problem, assuming the disk radius
is infinite such that plane strain conditions hold, leads to the result that the radial
and circumierential stresses are equal and, for an isotropic homogeneous medium

with Poisson ratio, 4 , proportional to the applied axial stress o,

= v '
U-—O‘.’*l—_—y-O'. (l)

It may be notes that for an incompressible matezial not only is the stress state
triaxial, but it is also hydrostatic leading to there being no shear distortion in the
spttimen.

Coupon tests have been employed by Gent and Lindley* in their experiments
upon rubber and by Lehrer and Schwalzbart** in metals. The purpose of the
following analysis is to calculate the stress distribut’on in a compressible thin
digk of finite radius,

Gent and Lindley were concerned with displacements and their analysis
employed what was equivalent to a "7 1ramum potential energy solution to predict
deformations and an apparent inodulus. However, for their approximation, a
variational procedure wis not used because the only free constant in their analysis,
the amplitude of the assumed parabolic deforrnation or bulge, was fixed by the
condition of incompressibility. While their analysis could be extended by introducing
a higher order deformation shape and a provision for compressitility, it does not

seem warranted at this time because our current interest is concerned with stresses.

* "Internal Rupture of Bonded Rubber Cylinder in Tension" , Proceedings Royal
Society, A. Vol. 249, p. 195, 1959.

*% “'Static and Fatigue Strength of Metals Subjected to Traixial Stresses', Institute
of the Aeronautical Sciences, Paper No. 60-12, January 1960.
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Complementary ¢uergy analysis.- The stress analysis will be carried out
using the minimum comglementary energy principle
for » disk of thickness 2h and
unit radius., The faceszxz+h

nw

are assumed to be rigidly bonded

to much stiffer supporting plates.
‘We may therefore formulate the
problem, assguming circumferential symmetry, 28 requiring the satisfacticr of the

field cquations of equilibrium
30’, + o’r‘-o'. 'a?ﬂ

3

1 o 7 t3x =° (2
3 3Ty , T W _
A St et = (3
- and corapatibility
v
P R 18 _ 2{0~0 L o
F" (Tr+ 5+ 3% "L‘;ﬁ")*‘ I =0 (4)
¥
o .19 2(0-03), | 3 B
e Gt r3ptSm)0 + YTy ;—;9;= ° (5) s
- 2 19 , 2% 1 3% ]
i (Frt+vse+ 330Gty S =0 (6 —
. X
- 3t L1 % T 139 -
' =r=+r3r+az=)"n";%*m“m"° 0 %
where @0, + Oy + 0 The boundary conditions are on the faces E'.- ;
uin 6, TRI=vIine, 2R) (8 =
& win 6, tR)= w; (9 . ' l;:l
'. -
’ and on tbe unloaded circumference . B !
0.(1, 9, )= T8, 2)=0 {10) ""‘" :
fa
-
T
3 p
- .i‘
3 |
= —
; 1
- j
;t.: :1
- i —
h ] .
- :
E .. s - . . .3
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] The elasticity solution to this problem is a formidabie one which is the

reason for using an energy approach. The theorem of minimum complementary

Z energy requires® that a proposed stress state is admissible if . )
: a) it satisiies the stress equations of equilibrium, and -
3 - b) the boundary conditions on that part of the boundary -

where stresses are prescribed.

Inspection of (2}=(7), and (8)-{10) indicates by implication that the compatibility
equations may not necessarily be satisfied, nor may the displacement boundary

conditions (8) and (9). The theorem however guarantees that if there is some

arbitrariness in the proposed stress state, it may be adjusted by minimizing the
complementary energy

) "m‘r‘w o

1
i Vo= X S 'g [E'é{o‘}c:-rc:} --é—{o;op G, 0;+0,0, +2‘—G‘r.f,]n!rdedz an
- 1

. “ge e

2w
-2 S So‘t(t;{) w,rdrde

‘s "o -
- to give the best possible averaged satisfaction of the compatibility and displacement €~
% boundary conditions. e
) The heart of the problem lies in the initial choice of the admissible functions L
- which is accomplished mainly by intuition and experience. Without any rationalization i
1 at this time, consider the following set which was chosen for reasonable simplicity ]
'ri in the subsequent algebra rcquired. -
2¢ Ry .
. 0= Ty A(1-r") Ccsh’“'m- z (12) . -
] = 2% aT)- e Pyt 22 13
3 o, =5 A[l (neNT ™+ r T*) cosh g 2 (13) o
= r-1 2y - —
ﬁ 0,= O, +[1~23tr ][2Acosh\c:‘_,,z -0} (14) . .
. AP T o
Tea™ —A[T-—T‘?] =y sinthp=S 2 as) T
3 It will be found upon substitution into (2} and (3) that the equilibrium equations are .
e satisfied, whereas inscrtion of © = 1 into (12) and {15) satisfies (10). The function I
F‘ set is therefore admissible, and furthermore contains a degree of arbitrariness
- represented by the, at present, unknown constants Oy’ A, p, and n. These latter

constants will be determined by minimizing V¥ e.g. 3V*/8¢, = 0, eic.

* See Sckolnikoff, Mathematical Theory of Elasticity, McGraw Hill, 1956.
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In passing it may be noted that the exponents n and p must exceed 0 and 1 . : &
respectively in order that infinite stresses are not introduced at the origin. Also .
S . the set has been chosen in such a way that at the originr =2 = 0, .
h Op= Oy =%, 0 (n -
oo to yield the desired limit as the disk thickness approaches zero, or, what is the oL
< |
- same, the radius of the disk becomes infinitely large. Finally 0,» 2ithough i
[f - unknown, may be identificd as the average tensile stress acting on the face to cause
- the deformation w_. .
- o —
s For convenience, we define .
» .
E ut= ‘.ﬂ’ (16) .
X and proceed to insert {(12)-(15) into (11) to obtain the complementary energy as a
1 function of the parameters, V* = V¥{A, Oy Do p). After the intergration and :: -
1 algebraic reduction, there results -
oy
o, -—E'V.= (5i+ S~ 29S0T+ Spta—2Ys ty +2(1vr) sty 17 : Fi
- +024 - 2ew, G+ MvAaC, (BT5) sinh sk an s
::.‘_' Where the following notation has been employed -
- ~ - :
L . 'ﬂ: T~ —
i S = T eE) (18 .
:-:-: [__n(n+e) 1 P+ 3(P+) 19 ::_-
& 5,= 2+ Fmazyinsm - TIFT3]t E(Fe3) ~ ZUPENPEY (19) .
o ._. -
y s,- .(_%P_f. (20 -
F ' n(P-H(N+P+7)
54T T AP (T P+A(NTA) (21 o
- n(P—y_ ' o
':“ . S ™ Pe+ni+il (zz) . ) s
o
= = ._(Eif__. e
- Se= Sa(p+a(P+n 23) S
- ‘ AN )
8 t,= uﬁi“—[sinh 2MR +2mR] (24)
9 , . -
t,= 2 sinh 2R+ 20K] - 2%AginhpR + Th (25) _ :
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)
1, = “: [sinh 248 + 2uR] - LA msinhufh (26)

t = _A.izli‘[s:nh 2uf+ 2u0] (27

Ths minimizing condition 3V*/ 94 = 0 leads to

[253~2ySs M*— vy & Er5] 0. sinhul

= (28)
[(s+Sym2ysOm*+ Sy 29uPsg + 2 (14 V) M2 S [sinh 26h + 2R )~ B{I+ 1) 4RSe
while 3V#/30° == 0 in conjunction with (28) gives
£ (29)
o= 1+ [25:-Cos+ o) vt P ainhtm &

2 | 2uR[{(5:4Sm2vS0C +8,~2vM3S5+2 (1+3) 4*Se | winh 2uR+ 25K} ~ BA R (++/
0, can then be inserted into (28) to determine A = A( WO). With A and o’o known

as functions of (n, p, w,), they can Le inserted into (17) to find

V= vTin,P; W) (30¥

In principle, therefore, one couid add the additional minimizing conditions
aV*/3n = 0 and av*/3p = 0 and {ind {inally = and p 2s functions of the applied de~
formation W, and of course the thickness parameter h, Hence, all the constants
A, 0, ™ and p are krown ir terms of w, and h can be placed back into {12)-(15)
to give the finall approximate strese distribution.

From the algebraic standpoint, however, it proves simpler to try various
values of n, and Pj in (30) and compute the corresponding value of V¥. There will
be some pairs that will give the algebraic minimum by this trial and error procedure
which is equivalent to the minimization condition.

At this stage in the analysis, it is worth re-examining the necessity for find~
ing this stress distribution with due consideration to the computational work involved.
At least one solution is now available, but it may be worth investigating other function

sets to see if they may be computationally simpler. Furthermore, it is recommended

that any computations be first carried out for an incompressible medium, V=, b=,
If additional work on this solution or variations of it are thought warranted, it will

be reported ar a later time. The only qualitative statement which can be made at

this time is that the true values of n, p * 1l nrobably be fairly large corresponding

to a stress distribution fairly close to (1) over a large part of the central portion of

the disk. One major limitation of the technique is that both n and p will deperd upon
the width/thickness ratio of the sample, so that a parameter study of the latter
ratio would entail an iteration of the computation of n and p.
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APPENDIY 1.1
Crack Propagation in Viscoelastic Media

in the body of the report, the stress distribution near a small crack ina
large thin sheet subjected to a uniform tensile stress was discussed. Further, it
was pointed out that the viscoelastic and elastic stress distributions are the same

for this loading, thus leading to the possibility of computing the viscoelastic strains

and displacements from the basic elastic information. The purpose of the following

analysis is to use this information to predict crack propagation characteristics ina
viscoelastic medium.

From the basic solution* the biaxial stress distribution in the plate strip
subjected to a tension do is

Phttte

oL
1 o:‘(""’):{‘xhb‘[‘x-bix'.é:i. ;3 x>b (1-a)
y =°'.%""’0{(%*}*"']; x=b+g (1-D)
‘L——— ) ®
—
" !
0 (x,0)= 0'.[1-0' -5t ["*{‘—’“b'll s xsb (2-a)
e 2 S g
bl da —affEof@e] 5 wesee @M

FiGuE &

where it is clear that the stress becomes infinite as the point of the crack is ap~
proached. In order to circumvent the necessity for conducting a large strain, elasto-
plastic solution, it will arbitrarily be assumed hat the stress may huild up to a
specified value at a distance § from the crack tip and remain coustant througkout the

interval 0 £ x-b < § until an ultimate one-dimensional strain €® is reached.

* D. D. Angand M. L. Williams: Combined Stresses in an Orthotropic Plate
Having a Finite Crack. GALCIT SM 692-1, California Institute of Technology,
January 1960 (rev. September 1960).
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0. 1

2 \ % It should be observed that the elastic
. % v 2%
\\ > solution is no 10nger correct, because .
Fd B the specimen, ty the equations of
'\\ equilibrium, is presumecd to be .
: X absorbing the stress indicated by the
cRACK dashed line. Thus the load represented
l-—- » ——~{ & f—- x=bie by integrating the stress betweenx s b
and x #b +§ is not accounted for when
BiGuRe »
the truncaticn is made. Therefore the
actual stress distribution would be more like the dotied line, with the additional

area accomplishirg the necessary force balance. On the other hand, bzcause

oy . this (dotted] distribution cannot easily
‘Z 'u‘/—%'— be calculated, and because it is degirable
'-\ to still have the force balance, the analysis :
Lo “"1\.. wil] be carricd out using the modified ':g
N truncated stress distribution shown in o
\ Figure c on which areas A; and A, are . :'_:
crmesx equal. If the existence of such quantities .-
T __j 5 o Xebee as e€*and § can be established by
Floure experiment, then the following analysis T
could lead to useful results, . T

Visualize then, the conditions along the line of crack prolongation, and

assume that the internal forces aiong the shear free line are carried, for simplicity,

by a series of discrete Voigt elements
averaged over the characteristic length . r
Ttre mechanism postulated is that each —
elemen* will strain as a resuilt of.stressel

( Ty and o’y) which are constant over the

length § assigned to each element as shown

in Figure d. The calues of these stresses

are determined from equations (1) and (2}
and the equilibrium condition discussed
earlier. Namely we assume that for a

crack width 2b, the stresses acting on

element (n) are the average vaiues:

pronr — < = -~ E i acoa~aiatem—mes o 7 Son
0 e TR S S Y T Y Y - T g >




-284-

belnadd a batnend
U |} 0 Aer = _%.. —f__—-———id—‘—v_r—ﬁ
.___-_--S—-———-~ K% bE | K 4YAT -

@ b ?—' )hm

E e L (3-a)
28, ove
o zﬂb [(h-&i)';’-n'il.—ny 4@ [(n“,'*_n%l + _2_9{(‘1_"),_“' .

Se(ne)d beinentg

L‘
L e L il SV o
* bont benp

3-b)

. 7 (
=15337§[("‘”7L“J’.] + ;:‘,szt;-[(nn)* -nt]+ %?L(nn)’_r(’]... e

After the strain in the first element reaches € *, it will break and the stress
distribution will shiit by one § width; i.e. the stress which had been acting on the
element n is now acting on element n + 1, where the effective crack length to be
used is 2 (b + 8 ). After m translations, or after element {m - 1) breaks, one has

tn
0. 2 _  _H.az 3 -
_0'.:=y———'2_57m1(“ Mm+-1)=(n m)‘]+ 4%[("-'"-”) -—('ﬂ-m#]* (4-a)
One
= Onx 4
%

To reiterate, g:is the average stress acting on element {n) before element (m)
breaks, but after element (m-1) has parted. Thus, the stress at the crack tip is
given approximately by
o = —_z‘qi‘ = oo {4-b)

Vbenmg
It is clear that if § is assumed to be a fixed characteristic dimensicn, the stress
acting on the element at the crack tip is not limited, but increases with crack length.
However, in the initial stages of crack growth (m{ << b) the stress is practicalli
constant as seen from equation (4-b).

Since we now have the two-dimensional stresses as a function of crack position,

the time dependent strain in each element can be found from the plane stress, stress-

strain equation. For an elastic material, we have

& =tlg-rm )

3
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For simplicity, we will assume an incompressible medium ( ¥ =}). The viscoe
elastic strain is obtained in the usual manner by replacing E by its equivalent
differential operator, which foz a Voigt model is®

B w (T 1) i6)
where

E, = modulus of the spring in parallel with a dashpot
with viscosity

T =n/E_ » retardation time of model

Insertion of (6) into (5) yields the viscoelastic stress-strain equation which applies

to each element de
TR+ &= “"'[ o, ~+x]

= m
= 2E, [0',"* ol _
In terms of the notation used in equation (4), equation (7} becomes
dé(-\ _(-\) (8)
TSR el e, [“'ﬁ + '1

where e‘:‘is the strain in elemnent (n) before element {m) breaks, but after element
{m-1) has parted. If we denote the time at which element (m}b-eaks by tm’ then
equation (8) applies to the time interval tm-l €t ¢ tm. In this time interval the

right hand side of (8) is constant so that we can integrate it for the strain:

m-&_{_c"_z +|] [ b (g;\* l)]e_z-z.._‘ o
TENTG

-—h T TTE T
-
where €, is defined as the strain existing in element (n) at the time element {m-~1)

breaks, whichist . If we sett= t ,.) in equation (9), the initial condition

('t.-.] = e(u-l)b

is satisfied. Letting t —» oo, we have

()]

E‘m(oor = €™M G [&l -+ |] = &{ 5 ! i(h-—-mi-\)t* (7\‘"\)*}
n ne 2E,L O, ey Eﬁ

(10)
v B foomet - om ]

* See the comments in the text regarding the use of an approximate compliance

representation ( 4.4.33 ) for greater generality, but with increased algebraic
complexity.

TETETLr—Y
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which is the long-time or equilibrium strain that would result if element (" . id
not breax. It is seen from equation (10} that this is a known value if the crack
position is given. Therefore as a matter of convenience we shall write (9) as

-t =Tm=s
e Em)*leh-nb :‘n]e 3—'&_'.

. (11-a)
TatEtEtnm
and the strain at the time when element (m)breaks
M tm)y [ Gaeiib ()Y o s
€= elgt[elm™ R T (11-b)

This expression can ncw be used to calculate the time at which each element breaks
and hence will give the crack velocity as a function of time.
Consider {irst the strain in element zerc for 0 €t ¢ to' sothatnems 0 and
-t
P = e+ [l ) eI

in which we must define t_; 20, €120 to satiaty the initial condition that the

material is unstrained att = 0. Hence,

€= el [\~ e'i'j

Element (0) breaks ttat, when €l0) (t )xel’P u eo,

= eM= el [l-e'{"] (12)
Solving for Lo
<. -
==-In]i- 5 (13)
-

which is the time that elapses before the crack starts to run. From equation (10)
Ce [ O
el=g[ =)

2=,
\ ) 1,2{' . oo

assuming (%—)«l

—_—

3 (14

% lm{l— SR ]

O /Ev
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Equation (11) gives the strain in the rext elementatt = tl as
1 . '1'-5?’ Ll
c™rxen+[e™ elle w6’ (15) T
’ In order to find t;, €\')° must be determined from (11-b) and (12) —_
L ) -% [T -
. e el ¥l Lo

Inserting t» .; expression in (15) and solving' for Y

L (D) » 0, (@ -
< < € -G 1 + = il"(ew/&..§ .
-1-t—:: '7t-‘ !l\[(e(‘;)/‘::)e" el(: = —-‘-tf-‘i' ’II\ i+ e':- rQ (16,

It is cbserved ‘Tat all of the strains appearinp are equilibrium values =nd are thus
kno'.n from equation (10). By assuming that the strain €* at which the element
breaks is much smaller than the equilibrium strain  €{L' , or equivalently that the
retrrdation tir« T is much larger than the time interval ) - t , equation (16)

sompifies to

t. . t, %[ &%
- et =yl S
T T c“:’_ t G::
k- Us: g '3 und assuming F cc 1, it is found that '
: >
¥ t _ t, V2% (2-vD) .
- . -~ = -4 (17) ]
T T (o./78)) -
F The initial velocity of crack propagation is given by . , -
- v, = B /T . i X
. TR -t/
3 and from (17) is approximately -
! = (0. /= Wbd (18) : -
E 'T o ret2 (-0 o
’ As a rough means of estimating § , consider McCullough's preliminary data* shown ’

in the figure in the region of constant stress, from which V= 2 x 10'3 in/sec,
1 O, = 20 psi, b = 0. 2 inches. Using typical room temperature properties gives )
L § =10 inches, which does not seem to be an unreasonable magnitude and may be v -
g—,g -

F_‘ thought of as a characteristic strand diameter. Note, as hypothesized §/h<<l. —

* J. McCullough: Studies on Velocity of Crack Fropagation. Interral Rep2rt to

Chemistry Department, Thiokol Chemical Corporation, Redstone Division, Huntsville,
. Alabama, September 1959,
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Calculation of crack tip velocity as a function of tip locaﬁou__._ -

With these results appearing reasonable, it is appropriate to extend the
3 analysis and obtain an expression for crack tip velocity as a function of crack
¥ growth. To do this, the expression (11-b) for en(m)b must first be expanded so
- . that all of the strains which appear on the right hand side are the known equilibrium
P values. It is seen from (11-b) that en(md)b

must be replaced by 8 function of
equilibrivm strains. If we write

< T =Tae
: € (B [e P e 0] e S S
3 it is seen that en(m'“b is in terms of equilibrium strains and €, m-Z)b.. -
S
Continuing this process until the only non-equilibrium strain in the expressiona for

en(m-l)b is e;lb = 0, we obtain the desired expression for ‘n(m-l)b.

Substitution of this result into (11-b) leads to the representation o

h P 5
Y- G- _t(pHy ~ e
e+ fledtelle T E (19) =

where, as before, we have defined €,,=t_ =0 . Noting that Gm(m)b is the strain
in element (m) just when element (m) breaks, and is therefore g%,

o - . . 'tﬂ-‘iﬂ

€= 6 m e‘::-.ﬁ.[e‘f-eﬁﬁ’le T (20)
F Since all of the strains in this egquation are known, as given by (10}, equation (20) o
- can be used to solve explicitly for crack tip velocity
X . V=8 N Y4 - :
C . m “to~ Ty [§ t-.D]‘t b
2 in which V__ is the velocity when the tip is at element (m). It will be convenient to -
E rewrite {(20) in the following form -
N - Gy - tn=t
] €% = 5. e % (21)

m=x0,1,2, ¢--
where we have defined

B e Lo -
o= | — € T

To illustrate the significance of (21), it is expanded form =0, 1, 2

[
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m=0: e':eﬁ[t-e’%.l (22-a)
m=i1: €&'= e,';‘[n-e‘¥] e.&i&*- e? (i-e i'i!:] (22-v)

m=2: & =enli- e'i']e'x& & li-e %]e' e eli-€ Y (22-0)

L

It is clear that if (Tu~T.)<<T , the exponential terms which multiply o, can be
taken as unity so that (21) becomes

= ellu
A
Utilizing (22-3) for €, we can rewrite {23) as

(23)

Wa -t ed’ W
— - ......r_"‘....l. 2
cho €Y wy ( "
$ 7Y
where it was convernient to define
Wea E:.-.’ ot
We T €%

If it is further assumed that only the first term in the equilibrium strain (10) need
be considered (i.e. that the strain resulting from the leading term in the stresses
(1-b) and (2-b) provides the main contribution to failure) then from {10)

-, U‘ -
el= “""‘"{(m— j +n*-(m-j)'*1 (25-a)
TH
and

e

e (25-b)
b+m
Svbstituting (25) into (24) gives the recurrence expression for -\%.-.— :
Wea =t . * W
we=t-E [tm-j+n¥—(m-30¥ ] 3L . {26)

Calculatiors give, for example

._..‘:‘v:-: Iy L71, 2.27) 275, *°°  for M=0,1,2,9,

It can be deduced that

. = ww for M3 4

—n-
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Urider the assumption that —;—'-«t ’

ol t.‘.‘:‘-al
so that

Wa  Cmpttn VB YITME/e ta—tes
—— ==
e €W o, e, eWZV§ T

*®
U.Vi-t wi/e V3
Evé‘ﬁ- T Va

(28)

Solving for Vo and using (27) we find

v.:-;{!—i_ -°"—/3" "-\’"“(H» ) ; mwea (29

showing that the velocity increases without boundas the crack grows which is
impossible because free running cracks are kncwn to be limited by speeda of the
order of half the shear wave spced. However such a result is not surprising since
inertia has not been included in the formulation. Nevertheless, (29} :aay provide u
reasonable approximation to the crack tip speed if it is sufficiently less than the
shear wave speed.

Passing to the continuous form by letting m § = s, in which s is the distance
the crack tip has traveled, we have

—ds x O/, o [S sy . 30-a
v=SYE o e b(H——s—) H sxas )

which shows

' . X K -
V!‘V% 3 oS el {30-b)
. 5
Vv oc. _:. 3 <1 {30-¢)

The initial behavior indicated in (30-b) results from the increasing amount of strain
which accumulates in the elements ah2ad of the crack as it propagates. This
increase in velocity when s <« b occurs while the stress at the crack tip remains
essentially constant as seen from equation (4-b). However, the fact that the gtress
is proportional to 75 for s >> 1 accounts for the more rapid increase in velocity
shown by (30-c¢)
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The time dependence of crack growth can be determined from (30-a) by
integration:

1\-&% +ﬁ = o L (31-a)

50 thut
= ¥ O/ee +1*
b = [?4 T H -‘%s%sl (31-b)
x GfEe - s -
Taged 2y 5 g @9

Remarks., o

The proposed phenomenological model is by no meane unique, with it being
possible to include a more complicated material representation instead of the
incompressible Voigt model used here. Also it should be possible to introduce a
more sophisticated fracture criterion if necessary, based not upon maximum strain,
but perhaps octahedral strain as a function of strain rate and cumulative damage,
Further, for eass in manipulation, the discrete element formulation might be
replaced by a continuous material formulation. Finally, a basic investigation
might be conducted to ascertain the physical significance of the characteristic
strand diameter, § , incorporated in the analysis.
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APEENDIX IO —
large Plane Strain Analysis for Distortion Energy in a Hollow Tube
The strain transformation in cylindrical coordinates is given by T
FT=F{r) ; BT=6 s E=E {1} g
Here the superscript bar indicates the deforrned or Evierian coordinats, The
Jaccbian of the tranrformatlion iz given by
s ].3% o o ‘ ar
Lfdﬁ = { o -; Ci]rde {2} e
L& jo o 1 ‘ dai
Incompressibility demands that
4, Ty =
ar (3)
¥ = yv*+a a® e N2 14)
=k X3
3% :
N= 1+ S (5) e
Substitation into (2) yields
et T o
_AJ.I =3F + k (6} ':\,‘_
o
L aaenditd
- {7
—2 = »x
= = N+ k
The equilibrium equatien i3 cast in Eulerian coordinates
‘ —6’. —--C.F;- _ a0, (8) ;
© ¥ T 73dF .
- > - — oy
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Substituting (6) and (7) yields after integration .
- . |
k=C~— I W 9
G, \
'—Ets C-’MK*‘—“'Z\ . (10) -
At the inner surface, radius a .
Aa=-o- ()
(]
--E-: C-’m)\! +—?_—'\—r. (12)
At the propellant-case interface, the radial stress (r=b) is taken to be Py
B P B -
il LSy (13)
N=1+m (-1 . (14)
where again )
a‘
= {19)
P-¥, } ' o du {16) ¢
=R TNy YIRS
The strain energy is easily seen to be a maximum at a, so that
W, = 4 (1a- D)= G {Mat++'r -2) (7
The interfacial pressure is determined by matching with the case. We have,
using a prime to indicate properties iz the raetal
o,=A-2
r= ¥ F (18)
v, =2 (IR ) 19
FEA YT (:9)
-

[r—
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At r = b, we havy —
t
~-R=A- ,%. (20) ﬁ.;
Aol (wy _ AQ1-2¢) 5 )
== T e - e 5
Note that we equate (u/r}), to the finite (Murnaghar strainj to be consistent with )
large strain theory, even though we use small strain theory in the case. At the
outer surface of the case, the preassure is assumed to be zero, so that
B=aAac? (22) o
Solution is expedited by de{ining, as before ¢
M 2-24
o= -1+ 22%) z3)
80 that .
¥, o
2 —
Np—1= ";:"‘? (24) L
Substitution into (6) yields
P 1 \ Aa Ay -t )
—_— - -+ — e .
-l P Y 3 I ™~ T e . (25)
and with (14), there results Lo
2p 1 _ MNa + 2 (AR C
T TImORny  A T m T+ m (g ) g (26) s
Since A will be approximately 4 near the yield, (6) is easily approximated by . .
b T ,* e
"= T‘ Na-1) using m=a/b (r4}) C
and the strain energy becomes .
e :
W =0 Pg + 2AmE (28)
This expression is to be compared with {4.5.48) for ¥ =} N
Lk P’¢* ~-
- = 29
Wonae = zuld+mO-9)* 2mm* (29
for small ¢. Thus, in small strain theory, the energy increascs quadratically with
pressure, whereas the dependence becomes linear in the large strain theory, i.e.
~ 2% ’
W= "2m (30) -
.
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